Browse > Article
http://dx.doi.org/10.4490/ALGAE.2007.22.3.147

Two Freshwater Cryptomonads New to Korea: Cryptomonas marssonii and C. pyrenoidifera  

Kim, Jee-Hwan (Department of Biology, Chungnam National University)
Boo , Sung-Min (Department of Biology, Chungnam National University)
Shin, Woong-Ghi (Department of Biology, Chungnam National University)
Publication Information
ALGAE / v.22, no.3, 2007 , pp. 147-152 More about this Journal
Abstract
We described two brownish freshwater Cryptomonas species, C. marssonii Skuja and C. pyrenoidifera Geitler as first records in Korea. The identification was based on light microscopy, scanning electron microscopy, and nuclear SSU rDNA sequences analysis. Cryptomonas marssonii is characterized by its sigmoid shape with a sharply pointed and dorsally curved antapex, dorso-ventrally flattened cell, two lateral plastids without pyrenoid, and its dimension of 18-25 μm in length and 8-13 μm in width. Cryptomonas pyrenoidifera is characterized by ovoid to elliptical shape with a partially twisted or rounded antapex, dorso-ventrally biconvex cell, lateral plastids with two pyrenoids, and the dimensions of 15-22 μm in length and 10-14 μm in width. Nuclear SSU rDNA sequences between C. marssonii WCK01 from Korea and CCAC0086 from Gernmay, and between C. pyrenoidifera WCK02 from Korea and CCMP152 from Australia were identical, respectively.
Keywords
Cryptomonas marssonii; C. pyrenoidifera; Cryptophyceae; morphology; nuclear SSU rDNA sequences;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Clay B.L., Kugrens P. and Lee R.E. 1999. A revised classification of Cryptophyta. Bot. J. Linn. Soc. 131: 131-151   DOI
2 Guillard R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L. and Chanley M.H. (eds), Culture of Marine Invertebrate Animals. Plenum Press, New York. pp. 26-60
3 Hill D.R.A. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170-188   DOI
4 Butcher R.W. 1967. An intoductory account of the smaller algae of British coastal waters. Part IV. Cryptophyceae. Fish. Invest. Ser. IV: 1-54
5 Chang Y.K. 1981. Additions to the fresh-water algae in Korea (I). Korean J. Bot. 24: 21-26
6 Huelsenbeck J.P. and Ronquist F. 2001. MRBA YES: Bayesian inference of phylogenetic trees. Bioinforrnatics 17: 754-755   DOI   ScienceOn
7 Archibald J.M. 2007. Nucleomorph genomes: structure, function, origin and evolution. BioEssays 29: 392-402   DOI   ScienceOn
8 Deane J.A., Strachan I.M., Saunders G .. W., Hill D.R.A. and McFadden G.I. 2002. Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38: 1236-1244   DOI   ScienceOn
9 Nishijima T. 1990. Growth characteristics of Plagioselrnis sp. (strain 87) causing freshwater red tide in the lower part of the Nakasuji River, Japan. Bull. Jap. Soc. Sci. Fish. 56: 353-359   DOI
10 Novarino G. and Lucas I.A.N. 1993. Some proposals for a new classification system of the Cryptophyceae. Bot. J. Lin. 111: 3-21   DOI   ScienceOn
11 Posada D. and Crandall K.A. 1998. Modeltest: Testing the model of DNA substitution. Bioinforrnatics 14: 817-818   DOI
12 Pringsheim E.G. 1968. Zur Kenntnis der Cryptomonaden des Sufswassets. Nova Hedwigia 16: 367-401
13 Douglas S.E. and Penny S.L. 1999. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J. Mol. Evol. 48: 236-244   DOI
14 Novarino G. 2003. A companion to the identification of cryptomonad flagellates Cryptophyceae (= Cryptomonadea). Hydrobiologia 502: 225-270   DOI   ScienceOn
15 Ehrenberg C.G. 1831. Symbolae physicae seu icones et descriptiones animalilium evertebratorum sepositis insectis quae ex itinere per Africanum Borealem et Asiam Occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg medicinae et chirurgiae doctorum studio novae aut illustratae redierunt. Mittler, Berlin
16 Hoef-Emden K. and Melkonian, M. 2003. Revision of the genus Cryptornonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a longhidden dimorphism. Protist 154: 371-409   DOI   ScienceOn
17 Hoef-Emden K., Marin B. and Melkonian, M. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and evolution of cryptophyte diversity. J. Mol. Evol. 55: 161-179   DOI
18 Douglas S.E., Zauner S., Fraunholz M., Beaton M., Penny S., Deng L.T., Wu X., Reith M., Cavalier-Smith T. and Maier D.-G. 2001. The highly reduced genome of an enslaved algal nucleus. Nature 350: 148-151   DOI   ScienceOn
19 Geitler L. 1922. Die Mikrophyten-Biocoenose der FontinalisBestande des Lunzer Unterseens und ihre Abhangigkeit vom Licht. Int. Rev. Gesamten Hydrobiol. 10: 683-689
20 Schiller J. 1957. Untersuchungen an den planktischen Protophyten des Neusiedlersees 1950-1954, II. Teio. Burgenlandisches Landesmuseum, Eisenstadt, 44 pp. pI. 112
21 Skuja H. 1939. Beitrag zur Algenflora Lettlands II. Acta Horti Bot. Univ. Latv. 11/12: 41-169.
22 Skuja H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Syrnb. Bot. Ups. 9: 1-399
23 Smith S.W., Overbeek R, Woese C.R, Gilbert W. and Gillevet P.M. 1994. The genetic data environment: an expandable GUI for multiple sequence analysis. Cornput. Appl. Biosci. 10: 671-675
24 Swofford D.L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (And Other Methods) Version 4.0b8. Sinauer Associates, Sunderland, MA
25 Hod-Emden K. 2007. Revision of the genus Cryptornonas (Cryptophyceae) II: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-Iess cells. Phycologia 46: 402-428   DOI
26 Cerino F. and Zingone A. 2006. A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur. J. Phycol. 41: 363-378   DOI   ScienceOn