DOI QR코드

DOI QR Code

Emendation of Rhodomonas marina (Cryptophyceae): insights from morphology, molecular phylogeny and water-soluble pigment in an Arctic isolate

  • Niels Daugbjerg (Department of Biology, University of Copenhagen) ;
  • Cecilie B. Devantier (Department of Biology, University of Copenhagen)
  • Received : 2024.02.19
  • Accepted : 2024.06.13
  • Published : 2024.06.19

Abstract

Rhodomonas (Cryptophyceae) and species assigned to this genus have undergone numerous taxonomic revisions. This also applies to R. marina studied here as it was originally assigned as a species of Cryptomonas and later considered a variation of R. baltica, the type species. Despite being described more than 130 years ago, R. marina still lacks a comprehensive characterization. Light and electron microscopy were employed to delineate a strain from western Greenland. The living cells were 18 ㎛ long and 9 ㎛ wide, elliptical in shape with a pointed to rounded posterior and truncated anterior in lateral view. Two sub-equal flagella emerged from a vestibulum, where also a furrow extended. In transmission electron microscopy, the furrow was associated with a tubular gullet and the pyrenoid embedded in a deeply lobed chloroplast. The chloroplast contained DNA in perforations and was surrounded by starch grains. A tubular nucleomorph was enclosed within the pyrenoid matrix. In scanning electron microscopy, the inner periplast consisted of rectangular plates with rounded edges and posteriorly these were replaced by a sheet-like structure. The water-soluble pigment was Crypto-Phycoerythrin type I (Cr-PE 545). A phylogenetic inference based on SSU rDNA confirmed the identity of strain S18 as a species of Rhodomonas as it clustered with congeners but also Rhinomonas, Storeatula, and Pyrenomonas. These genera formed a monophyletic clade separated from a diverse assemblage of other cryptophyte genera. To further explore the phylogeny of R. marina a concatenated phylogenetic analysis based on the SSU rDNA-ITS1-5.8S rDNA-ITS2-LSU rDNA region was performed but included only closely related species. The secondary structure of nuclear internal transcribed spacer 2 was predicted and compared to similar structures in related species. Using morphological and molecular signatures as diagnostic features the description of R. marina was emended.

Keywords

Acknowledgement

We thank Ojvind Moestrup for help with the TEM fixation and access to his library on microalgae. Lis Munk Frederiksen is thanked for thin sectioning of the material. ND thanks Carlsbergfondet (2012-01-0509, 2013-01-0259) and Brodrene Hartmanns Fond (A22920) for equipment grants. We thank two anonymous reviewers for their comments on an earlier version of the manuscript.

References

  1. Altenburger, A., Blossom, H. E., Garcia-Cuetos, L., Jakobsen, H. H., Carstensen, J., Lundholm, N., et al. 2020. Dimorphism in cryptophytes: the case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci. Adv. 6:eabb1611. doi.org/10.1126/sciadv.abb1611
  2. Arndt, C. & Sommer, U. 2014. Effect of algal species and concentration on development and fatty acid composition of two harpacticoid copepods, Tisbe sp. and Tachidius discipes, and a discussion about their suitability for marine fish larvae. Aquac. Nutr. 20:44-59. doi.org/10.1111/anu.12051
  3. Binzer, S. B., Svenssen, D. K., Daugbjerg, N., Alves-de-Souza, C., Pintoe, E., Hansen, P. J., et al. 2019. A-, B- and C-type prymnesins are clade specific compounds and chemotaxonomic markers in Prymnesium parvum. Harmful Algae 81:10-17. doi.org/10.1016/j.hal.2018.11.010
  4. Bourrelly, P. 1970. Les algues d'eau douce. Initiation a la systematique. Tome III: Les Algues bleues et rouges. Les Eugleniens, Peridiniens et Cryptomonadines. Societe nouvelle des editions Boubee, Paris, 512 pp.
  5. Butcher, R. W. 1967. An introductory account of the smaller algae of British coastal waters. Part IV. Cryptophyceae. Fishery Investigations, Series IV. Her Majesty's Stationery Office, London, 54 pp.
  6. Buttner, J. 1910. Die farbigen flagellaten des Kieler hafens. Schmidt & Klaunig, Kiel, 129 pp.
  7. Cavalier-Smith, T., Couch, J. A., Thorsteinsen, K. E., Gilson, P., Deane, J. A., Hill, D. R. A., et al. 1996. Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur. J. Phycol. 31:315-328. doi.org/10.1080/09670269600651541
  8. Cerino, F. & Zingone, A. 2006. A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur. J. Phycol. 41:363-378. doi.org/10.1080/09670260600839450
  9. Clay, B. L., Kugrens, P. & Lee, R. E. 1999. A revised classification of Cryptophyta. Bot. J. Linn. Soc. 131:131-151. doi.org/10.1006/bojl.1999.0259
  10. Dangeard, P. A. 1892. Sur un Cryptomonas marina. Le Botaniste 3:32.
  11. Darty, K., Denise, A. & Ponty, Y. 2009. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974-1975. doi.org/10.1093/bioinformatics/btp250
  12. Daugbjerg, N., Norlin, A. & Lovejoy, C. 2018. Baffinella frigidus gen. et sp. nov. (Baffinellaceae fam. nov., Cryptophyceae) from Baffin Bay: morphology, pigment profile, phylogeny, and growth rate response to three abiotic factors. J. Phycol. 54:665-680. doi.org/10.1111/jpy.12766
  13. Deane, J. A., Strachan, I. M., Saunders, G. W., Hill, D. R. A. & McFadden, G. I. 2002. Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38:1236-1244. doi.org/10.1046/j.1529-8817.2002.01250.x
  14. Ehrenberg, C. G. 1831. Animalia Evertebrata exclusis Insectis. Series Prima cum Tabularum Decade Prima. Berolini ex Officina Academica, Berlin, 126 pp.
  15. Ehrenberg, G. 1832. uber die Entwicklung und Lebensdauer der Infusionsthieve, nebst ferneren Beitragen zu einer Vergleichung ihrer organischen System. Konigl. Akad. Wiss. Berlin Abh. 1831:1-154.
  16. Ekelund, F., Daugbjerg, N. & Fredslund, L. 2004. Phylogeny of Heteromita, Cercomonas and Thaumatomonas based on SSU rDNA sequences, including the description of Neocercomonas jutlandica sp. nov., gen. nov. Eur. J. Protistol. 40:119-135. doi.org/10.1016/j.ejop.2003.12.002
  17. Erata, M. & Chihara, M. 1989. Re-examination of Pyrenomonas and Rhodomonas (class Cryptophyceae) through ultrastructural survey of red pigmented cryptomonads. Bot. Mag. Tokyo 102:429-443. doi.org/10.1007/BF02488125
  18. Fichtbauer, A., Temmink, R. J. M. & La Russa, M. 2023. Controlling the nitrogen environment for optimal Rhodomonas salina production. J. Appl. Phycol. 35:1565-1574. doi.org/10.1007/s10811-023-03020-0
  19. Gameiro, C. & Brotas, V. 2010. Patterns of phytoplankton variability in the Tagus Estuary (Portugal). Estuar. Coasts 33:311-323. doi.org/10.1007/s12237-009-9194-4
  20. Greenwold, M. J., Cunningham, B. R., Lachenmyer, E. M., Pullman, J. M., Richardson, T. L. & Dudycha, J. L. 2019. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc. R. Soc. B Biol. Sci. 286:20190655. doi.org/10.1098/rspb.2019.0655
  21. Greenwold, M. J., Merritt, K., Richardson, T. L. & Dudycha, J. L. 2023. A three-genome ultraconserved element phylogeny of cryptophytes. Protist 175:125994. doi.org/10.1016/j.protis.2023.125994
  22. Guillard, R. R. L. & Hargraves, P. E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234-236. doi.org/10.2216/i0031-8884-32-3-234.1
  23. Guiry, M. D. & Guiry, G. M. 2024. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from https://www.algaebase.org. Accessed May 30, 2024.
  24. Gusev, E., Martynenko, N., Kulizin, P. & Kulikovskiy, M. 2022. Molecular diversity of the genus Cryptomonas (Cryptophyceae) in Russia. Eur. J. Phycol. 57:526-550. doi.org/10.1080/09670262.2022.2031304
  25. Hausmann, K., Hulsmann, N. & Radek, R. 2003. Protistology. 3rd ed. E. Schweizerbart'sche Verlagsbuchhandlung, Berlin, pp. 199-202.
  26. Hill, D., Moestrup, O. & Vors, N. 1992. Rekylalger (Cryptophyceae). In Thomsen, H. A. (Ed.) Plankton i de Indre Danske Farvande. Havforskning fra Miljostyrelsen, Copenhagen, pp. 251-265.
  27. Hill, D. R. A. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170-188. doi.org/10.2216/i0031-8884-30-2-170.1
  28. Hill, D. R. A. & Wetherbee, R. 1988. The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. (Cryptophyceae). Phycologia 27:355-365. doi.org/10.2216/i0031-8884-27-3-355.1
  29. Hill, D. R. A. & Wetherbee, R. 1989. A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia 28:143-158. doi.org/10.2216/i0031-8884-28-2-143.1
  30. Hoef-Emden, K. 2007. Revision of the genus Cryptomonas (Cryptophyceae) II: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46:402-428. doi.org/10.2216/06-83.1
  31. Hoef-Emden, K. 2018. Revision of the genus Chroomonas Hansgirg: the benefits of DNA-containing specimens. Protist 169:662-681. doi.org/10.1016/j.protis.2018.04.005
  32. Hoef-Emden, K., Marin, B. & Melkonian, M. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol. 55:161-179. doi.org/10.1007/s00239-002-2313-5
  33. Hoef-Emden, K. & Melkonian, M. 2003. Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154:371-409. doi.org/10.1078/143446103322454130
  34. Hulburt, E. M. 1965. Flagellates from brackish waters in the vicinity of the Woods Hole, Massachusetts. J. Phycol. 1:87-94. https://doi.org/10.1111/j.1529-8817.1965.tb04563.x
  35. Javornicky, P. 1967. Some interesting algal flagellates. Folia Geobot. Phytotaxon. 2:43-67. doi.org/10.1007/BF02851754
  36. Javornicky, P. 2001. Freshwater Rhodomonads (Cryptophyceae). Algol. Stud. 102:93-116. doi.org/10.1127/algol_stud/102/2001/93
  37. Karsenti, E., Acinas, S. G., Bork, P., Bowler, C., De Vargas, C., Raes, J., et al. 2011. A holistic approach to marine eco-systems biology. PLoS Biol. 9:e1001177. doi.org/10.1371/journal.pbio.1001177
  38. Karsten, G. 1898. Rhodomonas baltica. n.g. et sp. Wiss. Meeresunters. Abt. Kiel Neue Folge 3:15-16.
  39. Khanaychenko, A., Popova, O. V., Rylkova, O. A., Aleoshin, V. V., Aganesova, L. O. & Saburova, M. 2022. Rhodomomonas storeatuloformis sp. nov. (Cryptophyceae, Pyrenomonadaceae), a new cryptomonad from the Black Sea: morphology versus molecular phylogeny. Fottea 22:122-136. doi.org/10.5507/fot.2021.019
  40. Klaveness, D. 1989. Biology and ecology of the Cryptophyceae: status and challenges. Biol. Oceanogr. 6:257-270. doi.org/10.1080/01965581.1988.10749530
  41. Knuckey, R. M., Semmens, G. L., Mayer, R. J. & Rimmer, M. A. 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339-351. doi.org/10.1016/j.aquaculture.2005.02.053
  42. Krasnova, E. D., Pantyulin, A. N., Matorin, D. N., Todorenko, D. A., Belevich, T. A., Milyutina, I. A., et al. 2014. Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) bloom in the redox zone of the basins separating from the White Sea. Microbiology 83:270-277. doi.org/10.1134/S0026261714030102
  43. Kugrens, P., Clay, B. L. & Lee, R. E. 1999. Ultrastructure and systematics of two new freshwater red cryptomonads, Storeatula rhinosa, sp. nov. and Pyrenomonas ovalis, sp. nov. J. Phycol. 35:1079-1089. doi.org/10.1046/j.1529-8817.1999.3551079.x
  44. Kugrens, P. & Lee, R. E. 1987. An ultrastructural survey of cryptomonad periplasts using quick-freezing freeze fracture techniques. J. Phycol. 23:365-376. doi.org/10.1111/j.1529-8817.1987.tb04146.x
  45. Kuroiwa, T. 1991. The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int. Rev. Cytol. 128:1-62. doi.org/10.1016/S0074-7696(08)60496-9
  46. Lawrenz, E., Fedewa, E. J. & Richardson, T. L. 2011. Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J. Appl. Phycol. 23:865-871. doi.org/10.1007/s10811-010-9600-0
  47. Lemmermann, E. 1903. Das Phytoplankton des Meeres. II. Abh. Naturwiss. Verein Bremen 17:341-418.
  48. Lohmann, H. 1908. Untersuchungen zur Feststellung des vollstandigen Gehaltes des Meeres an Plankton. Wissensch. Meeresunters. Abt. Kiel, Neue Folge 10:129-370.
  49. Lucas, I. A. N. 1970. Observations on the ultrastructure of representatives of the genera Hemiselmis and Chroomonas (Cryptophyceae). Br. Phycol. J. 5:29-37. doi.org/10.1080/00071617000650041
  50. Majaneva, M., Remonen, I., Rintala, J.-M., Belevich, I., Kremp, A., Setala, O., et al. 2014. Rhinomonas nottbecki n. sp. (Cryptomonadales) and molecular phylogeny of the family Pyrenomonadaceae. J. Eukaryot. Microbiol. 61:480-492. doi.org/10.1111/jeu.12128
  51. Marin, B., Klingberg, M. & Melkonian, M. 1998. Phylogenetic relationships among the Cryptophyta: analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 149:265-276. doi.org/10.1016/S1434-4610(98)70033-1
  52. Martynenko, N. A., Gusev, E. S., Kulizin, P. V., Guseva, E. E., McCartney, K. & Kulikovskiy, M. S. 2020. A new species of Cryptomonas (Cryptophyceae) from Western Urals (Russia). Eur. J. Taxon. 649:1-12. doi.org/10.5852/ejt.2020.649
  53. Moustaka-Gouni, M. 1996. Some aspects on the morphology and ecology of Rhodomonas minuta var. nannoplanctica and R. lens (Cryptophyceae) in two Greek lakes. Nord. J. Bot. 16:335-343. doi.org/10.1111/j.1756-1051.1996.tb00243.x
  54. Nogueira, N., Sumares, B., Nascimento, F. A., Png-Gonzalez, L. & Afonso, A. 2021. Effects of mixed diets on the reproductive success and population growth of cultured Acartia grani (Calanoida). J. Appl. Aquac. 33:1-14. doi.org/10.1080/10454438.2019.1602096
  55. Novarino, G. 2012. Cryptomonad taxonomy in the 21st century: the first two hundred years. In Wolowski, K., Kaczmarska, I., Ehrman, J. M. & Wojtal, A. Z. (Eds.) Current Advances in Algal Taxonomy and Its Applications: Phylogenetic, Ecological and Applied Perspective. Institute of Botany Polish Academy of Sciences, Krakow, pp. 19-52.
  56. Ohs, C. L., Chang, K. L., Grabe, S. W., DiMaggio, M. A. & Stenn, E. 2010. Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 307:225-232. doi.org/10.1016/j.aquaculture.2010.07.016
  57. Oostlander, P. C., van Houcke, J., Wijffels, R. H. & Barbosa, M. J. 2020. Optimization of Rhodomonas sp. under continuous cultivation for industrial applications in aquaculture. Algal Res. 47:101889. doi.org/10.1016/j.algal.2020.101889
  58. Ribeiro, C. G., dos Santos, A. L., Gourvil, P., Gall, F. L., Marie, D., Tragin, M., et al. 2020. Culturable diversity of Arctic phytoplankton during pack ice melting. Elem. Sci. Anth. 8:6. doi.org/10.1525/elementa.401
  59. Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. doi.org/10.1093/bioinformatics/btg180
  60. Santore, U. J. 1982. Comparative ultrastructure of two members of the Cryptophyceae assigned to the genus Chroomonas - with comments on their taxonomy. Arch. Protistenk. 125:5-29. doi.org/10.1016/S0003-9365(82)80002-X
  61. Santore, U. J. 1984. Some aspects of the taxonomy in the Cryptophyceae. New Phytol. 98:627-646. https://doi.org/10.1111/j.1469-8137.1984.tb04153.x
  62. Santore, U. J. 1986. The ultrastructure of Pyrenomonas heteromorpha comb. nov. (Cryptophyceae). Bot. Mar. 29:75-82. https://doi.org/10.1515/botm.1986.29.1.75
  63. Sato, T., Nagasato, C., Hara, Y. & Motomura, T. 2014. Cell cycle and nucleomorph division in Pyrenomonas helgolandii (Cryptophyta). Protist 165:113-122. doi.org/10.1016/j.protis.2014.01.003
  64. Shalchian-Tabrizi, K., Brate, J., Logares, R., Klaveness, D., Berney, C. & Jakobsen, K. S. 2008. Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ. Microbiol. 10:2635-2644. doi.org/10.1111/j.1462-2920.2008.01685.x
  65. Solarska, M., Adamski, M. & Piatek, J. 2023. Complicated family relationships, or about taxonomic problems in the family Pyrenomonadaceae (Cryptophyceae). Oceanol. Hydrobiol. Stud. 52:299-306. doi.org/10.26881/oahs2023.3.04
  66. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. doi.org/10.1093/bioinformatics/btu033
  67. Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA.
  68. Thoisen, C., Vu, M. T. T., Carron-Cabaret, T., Jepsen, P. M., Nielsen, S. L. & Hansen, B. W. 2018. Small-scale experiments aimed at optimization of large-scale production of the microalga Rhodomonas salina. J. Appl. Phycol. 30:2193-2202. doi.org/10.1007/s10811-018-1434-1
  69. Tremblay, R., Cartier, S., Miner, P., Pernet, F., Quere, C., Moal, J., et al. 2007. Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture 262:410-418. doi.org/10.1016/j.aquaculture.2006.10.009
  70. White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.) PCR Protocols: a Guide to Methods and Applications. Academic Press Inc., New York, pp. 315-322.
  71. Zhang, J., Wu, C., Pellegrini, D., Romano, G., Esposito, F., Ianora, A., et al. 2013. Effects of different monoalgal diets on egg production, hatching success and apoptosis induction in a Mediterranean population of the calanoid copepod Acartia tonsa (Dana). Aquaculture 400-401:65-72. doi.org/10.1016/j.aquaculture.2013.02.032
  72. Zuker, M. 2003. mFold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406-3415. doi.org/10.1093/nar/gkg595