• Title/Summary/Keyword: novel species

Search Result 762, Processing Time 0.023 seconds

Safety Investigation on Foodborne Pathogens and Mycotoxins in Honeybee Drone Pupas (수벌번데기로부터 식중독 세균 및 곰팡이독소 안전성 평가)

  • Kim, Se-Gun;Woo, Soon-Ok;Jang, Hye-Ri;Choi, Hong-Min;Moon, Hyo-Jung;Han, Sang-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.399-403
    • /
    • 2018
  • In this study, safety investigations on harmful microorganisms and mycotoxins were conducted on honeybee drone pupae as a new food material, which is rich in nutrients and capable of being mass produced in apiaries. The honeybee drone pupae produced in apiaries were collected from three different regions in Korea and frozen immediately. Subsequently, the samples were subjected to freeze-drying. According to the Korean Food Code test method, coliforms, Salmonella species, Staphylococcus aureus, and enterohemorrhagic Escherichia coli were not detected in 280 honeybee drone pupas. In addition, mycotoxins, aflatoxin $B_1$, ochratoxin A, deoxynivalenol, and zearalenone were not detected. Therefore, it is proposed that the honeybee drone pupae collected from the beehives and immediately frozen as safe from harmful microorganisms and mycotoxins and can be used as a food material.

Improved Vapor Recognition in Electronic Nose (E-Nose) System by Using the Time-Profile of Sensor Array Response (센서 응답의 Time-Profile 을 이용한 전자 후각 (E-Nose) 시스템의 Vapor 인식 성능 향상)

  • Yoon Seok, Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • The electronic nose (E-nose) recently finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. The odor recognition performance of E-nose can be improved by manipulating the sensor array responses of vapors in time-profile forms. The different chemical interactions between the sensor materials and the volatile organic compounds (VOC's) leave unique marks in the signal profiles giving more information than collection of the conventional piecemal features, i.e., maximum sensitivity, signal slopes, rising time. In this study, to use them in vapor recognition task conveniently, a novel time-profile method was proposed, which is adopted from digital image pattern matching. The degrees of matching between 8 different vapors were evaluated by using the proposed method. The test vapors are measured by the silicon-based gas sensor array with 16 CB-polymer composites installed in membrane structure. The results by the proposed method showed clear discrimination of vapor species than by the conventional method.

In vitro response of rat microglia and human polymorphonuclear cells (PMN) to immunoactive compounds

  • Lombardi, Valter RM;Eetcheverria, Ignacio;Fernandez-Novoa, Lucia;Diaz, Joaquin;Seoane, Silvia;Cacabelos, Ramon
    • Advances in Traditional Medicine
    • /
    • v.5 no.3
    • /
    • pp.216-230
    • /
    • 2005
  • Although the field of study in immune enhancing compounds is relatively new, natural products from plants represent a rich and promising source of novel molecules with immunomodulating properties, Microglial cells, the main immune effector cells of the brain, usually display a ramified morphology and low expression levels of immunologically relevant antigens such as MHC class I and class II. Since any compound which participates in activation of phagocytic cells contributes to the production of potentially toxic factors, the search for convenient in vitro test-systems and study of mechanisms of action of these agents are of great interest. Human blood polymorphonuclear (PMN) cells and primary microglial cells isolated from Sprague-Dawley rats were used as cellular screening tests for study of phagocytosis-stimulating action of immunomodulating agents. Numbers of phagocytic activity were evaluated by the phagocyte ingestion of yeast cells and NO-synthase activity, nitrite production, and nitroblue tetrazolium test were determined after phagocyte stimulation. It was possible to demonstrate that indexes of phagocytic activity can be used as quantitative indicators for measurement immunomodulating activity. As a positive control, Zymosan A-induced phagocytosis in both PMN cells and primary microglial cells was used. $IFN-{\gamma}$ (0.1 -1 U/ml) stimulated phagocytosis in PMN cells 1.2 times after 2 - 3 h incubation, although at higher concentrations (10 - 100 U/ml) it strongly inhibited phagocytosis. In a similar way, at higher concentrations, $IFN-{\gamma}$ (100 - 500 U/ml) suppressed phagocytosis in zymosan-A stimulated microglial cells. When Polypodium leucotomus, cambricum and vulgare extracts were tested alone, increased levels of phagocytosis were observed in PMN. In addition, microglial cells showed both increased phagocytosis and MHC class-II antigen expressions. Surprisingly, when PMN and microglia were treated with a combination of Polypodium and $IFN-{\gamma}$, phagocytosis was not inhibited. We did not find changes in NO-synthase activity and nitrite production in both microglia and PMN cells activated by different immunomodulating agents. These results indicate that primary microglial cell cultures as well as human PMN cells can provide reproducible quantitative results in screening phagocytic activity of different immunoactive compounds. Furthermore, both inhibitory or activation mechanisms might be studied using these in vitro experimental approaches.

Anti-aging Cosmetic Application of Novel Multi-herbal Extract Composed of Nelumbo nucifera Leaves, Saururus chinensis and Orostachys japonica (하엽, 삼백초 및 와송으로 구성된 식물복합추출물의 항노화 화장품 소재로서의 응용성 연구)

  • Baik, Minyoung;Kim, Jun Hyeong;Lee, Dae Woo;Hwang, Jae Sung;Moon, Eunjung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.93-102
    • /
    • 2017
  • In this study, various plant extracts were screened for the effective and safe skin care ingredient according to the antioxidant activity assay guidelines. We selected an optimized combination herbal extract, Charmzone extract (CZE), which composed of Nelumbo nucifera leaves, Saururus chinensis and Orostachys japonica. CZE exerted free radical scavenging activity. It reduced reactive oxygen species formation and increased total antioxidant capacities in human keratinocyte (HaCaT) and normal human dermal fibroblasts (NHDF). CZE also leaded procollagen type 1 secretion in NHDF and decreased cellular melanin contents in B16F10. The production of nitric oxide was decreased by CZE in lipopolysaccharide-stimulated RAW264.7 in a dose dependent manner. Therefore, it is concluded that CZE can be applied for naturally derived anti-aging functional skin care ingredient for anti-oxidation, wrinkle enhancement, whitening, anti-inflammation and wound healing of skin.

A Simulation Model for the Study on the Forest Fire Pattern (산불확산패턴 연구를 위한 시뮬레이션 모델)

  • Song, Hark-Soo;Jeon, Wonju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Because forest fires are predicted to increase in severity and frequency under global climate change with important environmental implications, an understanding of fire dynamics is critical for mitigation of these negative effects. For the reason, researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed the simulation models to mimic the forest fire spread patterns. In this study, we suggested a novel model considering the wind effect. Our theoretical forest was comprised of two different tree species with varying probabilities of transferring fire that were randomly distributed in space at densities ranging from 0.0 (low) to 1.0 (high). We then studied the distributional patterns of burnt trees using a two-dimensional stochastic cellular automata model with minimized local rules. We investigated the time, T, that the number of burnt trees reaches 25% of the whole trees for different values of the initial tree density, fire transition probability, and the degree of wind strength. Simulation results showed that the values of T decreased with the increase of tree density, and the wind effect decreased in the case of too high or low tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue

  • Chen, Weijie;Wang, Junlian;Luo, Yong;Wang, Tao;Li, Xiaochun;Li, Aiyun;Li, Jia;Liu, Kang;Liu, Baolin
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • Background: This study was designed to investigate whether ginsenoside Rb1 (Rb1) and compound K (CK) ameliorated insulin resistance by suppressing endoplasmic reticulum (ER) stress-induced inflammation in adipose tissue. Methods: To induce ER stress, epididymal adipose tissue from mice or differentiated 3T3 adipocytes were exposed to high glucose. The effects of Rb1 and CK on reactive oxygen species production, ER stress, TXNIP/NLRP3 inflammasome activation, inflammation, insulin signaling activation, and glucose uptake were detected by western blot, emzyme-linked immunosorbent assay, or fluorometry. Results: Rb1 and CK suppressed ER stress by dephosphorylation of $IRE1{\alpha}$ and PERK, thereby reducing TXNIP-associated NLRP3 inflammasome activation in adipose tissue. As a result, Rb1 and CK inhibited IL-$1{\beta}$ maturation and downstream inflammatory factor IL-6 secretion. Inflammatory molecules induced insulin resistance by upregulating phosphorylation of insulin receptor substrate-1 at serine residues and impairing insulin PI3K/Akt signaling, leading to decreased glucose uptake by adipocytes. Rb1 and CK reversed these changes by inhibiting ER stress-induced inflammation and ameliorating insulin resistance, thereby improving the insulin IRS-1/PI3K/Akt-signaling pathway in adipose tissue. Conclusion: Rb1 and CK inhibited inflammation and improved insulin signaling in adipose tissue by suppressing ER stress-associated NLRP3 inflammation activation. These findings offered novel insight into the mechanism by which Rb1 and CK ameliorate insulin resistance in adipose tissue.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Phylogenetic diversity and UV resistance analysis of radiation-resistant bacteria isolated from the water in Han River (한강물로부터 분리된 방사선 내성 세균들의 계통학적 다양성 및 UV 내성 분석)

  • Lee, Jae-Jin;Joo, Eun Sun;Lee, Do Hee;Jung, Hee-Young;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.65-73
    • /
    • 2016
  • The aim of this study was to investigate the UV-resistance of radiation-resistant bacteria isolated from the water of Han River, South Korea. The water sample was irradiated with 3 kGy gamma radiation prior to isolation. Radiation-resistant bacterial strains were isolated by standard serial dilution method on R2A and 1/10 diluted R2A agar. The resulting purely isolated 60 cultures of bacteria were analysed for UV resistance and used in further studies. Based on the comparative analyses of 16S rRNA gene sequences, the bacterial isolates were divided into 3 phyla (4 genera): the phylum Deinococcus-Thermus (the genus Deinococcus) was 61.7%, Bacteroidetes (Hymenobacter and Spirosoma) was 23.4%, and Firmicutes (Exiguobacterium) was 15%. The results suggested that twenty-nine isolates are candidates new species belonging to Deinococcus, Hymenobacter, and Spirosoma, or other new genera. Nine bacterial strains were selected among the novel candidates and the UV-resistance analysis was conducted. All the candidate bacterial strains showed high UV resistance, similar to that of D. radiodurans R1.

Analysis of Species Variety and Physiological Characteristics of Denitrifying Oligotrophic Bacteria Isolated from the Specific Environment in Korea (국내 특수 생태환경의 탈질 저영양 세균의 종 다양성 및 생리적 특성 분석)

  • Lee, Chang-Muk;Weon, Hang-Yeon;Kwon, Soon-Wo;Kang, Han-Chul;Koo, Bon-Sung;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • In an effort to isolate novel bacteria for the bioremediation of over-fertilized soils, we identified 135 denitrifying cells out of 3,471 oligotrophic bacteria pools (3.9%) using a denitrification medium supplemented with potassium nitrate as the sole nitrogen source. Soil samples were taken from ecologically well-conserved areas, including a mountain swamp around the demilitarized zone (Yongneup), two ecoparks (Upo and the Mujechi bog), and ten representative islands around the Korean peninsula (Jejudo, Daecheongdo, Socheongdo, Baekryeongdo, Ulrungdo, Dokdo, Geomundo, Hongdo, Huksando and Yeonpyeongdo). All of the 135 bacteria produced nitrogen gas from the denitrification medium, and were proved to be nitrate reductase positive by API-BioLog tests. Phylogenetic analysis using 16S rDNA sequences revealed that the 135 bacteria consisted of 44 different genera. Along with the most prominent, Proteobacteria (87.4%), we identified denitrifying bacteria from Firmicutes (9.4%), Actinobacteria (2.4%), and Bacteroidetes (0.8%). Physiological analyses of the 44 representative denitrifying bacteria, under various pH levels, growth temperatures and salt stresses, revealed 12 favorable denitrifying strains for soil bioremediation.

Identification and Biochemical Characterization of Xylanase-producing Streptomyces glaucescens subsp. WJ-1 Isolated from Soil in Jeju Island, Korea (제주도 토양에서 분리한 xylanase 생산균주 Streptomyces glaucescens subsp. WJ-1의 동정 및 효소의 생화학적 특성 연구)

  • Kim, Da Som;Jung, Sung Cheol;Bae, Chang Hwan;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • A xylan-degrading bacterium (strain WJ-1) was isolated from soil collected from Jeju Island, Republic of Korea. Strain WJ-1 was characterized as a gram-positive, aerobic, and spore-forming bacterium. The predominant fatty acid in this bacterium was anteiso-$C_{15:0}$ (42.99%). A similarity search based on 16S rRNA gene sequences suggested that the strain belonged to the genus Streptomyces. Further, strain WJ-1 shared the highest sequence similarity with the type strains Streptomyces spinoveruucosus NBRC 14228, S. minutiscleroticus NBRC 13000, and S. glaucescens NBRC 12774. Together, they formed a coherent cluster in a phylogenetic tree based on the neighbor-joining algorithm. The DNA G+C content of strain WJ-1 was 74.7 mol%. The level of DNA-DNA relatedness between strain WJ-1 and the closest related species S. glaucescens NBRC 12774 was 85.7%. DNA-DNA hybridization, 16S rRNA gene sequence similarity, and the phenotypic and chemotaxonomic characteristics suggest that strain WJ-1 constitutes a novel subspecies of S. glaucescens. Thus, the strain was designated as S. glaucescens subsp. WJ-1 (Korean Agricultural Culture Collection [KACC] accession number 92086). Additionally, strain WJ-1 secreted thermostable endo-type xylanases that converted xylan to xylooligosaccharides such as xylotriose and xylotetraose. The enzymes exhibited optimal activity at pH 7.0 and $55^{\circ}C$.