Browse > Article

Analysis of Species Variety and Physiological Characteristics of Denitrifying Oligotrophic Bacteria Isolated from the Specific Environment in Korea  

Lee, Chang-Muk (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration)
Weon, Hang-Yeon (Agricultural Microbiology Team, National Academy of Agricultural science, Rural Development Administration)
Kwon, Soon-Wo (Agricultural Microbiology Team, National Academy of Agricultural science, Rural Development Administration)
Kang, Han-Chul (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration)
Koo, Bon-Sung (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration)
Yoon, Sang-Hong (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.3, 2011 , pp. 210-217 More about this Journal
Abstract
In an effort to isolate novel bacteria for the bioremediation of over-fertilized soils, we identified 135 denitrifying cells out of 3,471 oligotrophic bacteria pools (3.9%) using a denitrification medium supplemented with potassium nitrate as the sole nitrogen source. Soil samples were taken from ecologically well-conserved areas, including a mountain swamp around the demilitarized zone (Yongneup), two ecoparks (Upo and the Mujechi bog), and ten representative islands around the Korean peninsula (Jejudo, Daecheongdo, Socheongdo, Baekryeongdo, Ulrungdo, Dokdo, Geomundo, Hongdo, Huksando and Yeonpyeongdo). All of the 135 bacteria produced nitrogen gas from the denitrification medium, and were proved to be nitrate reductase positive by API-BioLog tests. Phylogenetic analysis using 16S rDNA sequences revealed that the 135 bacteria consisted of 44 different genera. Along with the most prominent, Proteobacteria (87.4%), we identified denitrifying bacteria from Firmicutes (9.4%), Actinobacteria (2.4%), and Bacteroidetes (0.8%). Physiological analyses of the 44 representative denitrifying bacteria, under various pH levels, growth temperatures and salt stresses, revealed 12 favorable denitrifying strains for soil bioremediation.
Keywords
Oligotrophic bacteria; denitrifying bacteria; activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Staley, J. T. and A. Konopka. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39: 321-346.   DOI   ScienceOn
2 Steward, G. F., B. D. Jenkins, B. B. Ward, and J. P. Zehr. 2004. Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Appl. Environ. Microbiol. 70: 1455-1465.   DOI   ScienceOn
3 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
4 Whang, K. and T. Hattori. 1988. Oligotrophic bacteria from rendzina forest soil. Antonie Van Leeuwenhoek 54: 19-36.   DOI   ScienceOn
5 Ohta, H. and T. Hattori. 1983. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek 49: 429-446.
6 Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734-740.   DOI   ScienceOn
7 Philippot, L., M. Cregut, D. Cheneby, M. Bressan, S. Dequiet, F. Martin-Laurent, L. Ranjard, and P. Lemanceau. 2008. Effect of primary mild stresses on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiol. Lett. 285: 51-57.   DOI   ScienceOn
8 Poindexter, J. S. 1981. The caulobacters: ubiquitous unusual bacteria. Microbiol. Rev. 45: 123-179.
9 Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371-4378.
10 Singh, A., N. Singh Chauhan, H. V. Thulasiram, V. Taneja, and R. Sharma. 2010. Identification of two flavin monooxygenases from an effluent treatment plant sludge metagenomic library. Bioresour. Technol. 101: 8481-8484.   DOI   ScienceOn
11 Jones, C. M., B. Stres, M. Rosenquist, and S. Hallin. 2008. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 25: 1955-1966.   DOI   ScienceOn
12 Kim, H. and H. Kang. 2011. The Impacts of Excessive Nitrogen Additions on Enzyme Activities and Nutrient Leaching in Two Contrasting Forest Soils. J. Microbiol. 49: 369-375.   DOI
13 Lau, H. T., J. Faryna, and E. W. Triplett. 2006. Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int. J. Syst. Evol. Microbiol. 56: 867-871.   DOI   ScienceOn
14 Colwell, R. K., E. A. Norse, D. Pimentel, F. E. Sharples, and D. Simberloff. 1985. Genetic engineering in agriculture. Science 229: 111-112.   DOI
15 Lee, C. M., H. Y. Weon, Y. J. Kim, J. A. Son, S. H. Yoon, B. S. Koo, and S. W. Kwon. 2009. Aquitalea denitrificans sp. nov., isolated from a Korean wetland. Int. J. Syst. Evol. Microbiol. 59: 1045-1048.   DOI   ScienceOn
16 Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143- 169.
17 Cheneby, D., L. Philippot, A. Hartmann, C. Henault, and J. Germon. 2000. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol. Ecol. 34: 121-128.
18 Colwell, R. R. and A. Huq. 1994. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Annals of the New York Academy of Sciences 740: 44-54.   DOI
19 Fernandez-Arrojo, L., M. E. Guazzaroni, N. Lopez-Cortes, A. Beloqui, and M. Ferrer. 2010. Metagenomic era for biocatalyst identification. Curr. Opin. Biotechnol. 21: 725-733.   DOI   ScienceOn
20 Feng, S. and E. R. Tillier. 2007. A fast and flexible approach to oligonucleotide probe design for genomes and gene families. Bioinformatics 23: 1195-1202.   DOI   ScienceOn
21 Gao, H., Z. K. Yang, T. J. Gentry, L. Wu, C. W. Schadt, and J. Zhou. 2007. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl. Environ. Microbiol. 73: 563-571.   DOI   ScienceOn