• Title/Summary/Keyword: normal mode method

Search Result 307, Processing Time 0.027 seconds

Y-branch Directional Coupler Optical Switch/Modulator (Y-분기 방향성 결합기 광 스위치/변조기)

  • 김창민;한상필;송낙운
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1108-1116
    • /
    • 1993
  • Y-branch directional coupler optica1 switches with two different coupling lengths are fabricated on z-cut LiNbO3 and tested at r = 1.3 rm. The normal mode and coupled mode theories are utilized to calculate device coupling length and switching voltage. Simulation of the beam propagation method (BPM) is also performed to confirm the device coupling lengths. For dc operation, experimental results are in good agreement with the modee theories expectation.

  • PDF

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

Output Feedback Sliding Mode Control with High-gain Observer (고이득 관측기를 이용한 슬라이딩 모드 제어기 설계)

  • Oh, Seungrohk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • We consider a single-input-single-output nonlinear system which is represented in a normal form. The model contains the uncertainty. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty We design the globally bounded output feedback controller using sliding mode control to stabilize the closed-loop system. The globally bounded output feedback controller reduce the peaking in the states variables. The proposed method give a more design freedom in the design of the globally bounded controller than that of the previous work.

New Higher-Order Fixed-Interface Component Mode Synthesis by Applying a Field-Consistency Concept (장-일치 개념을 적용한 신 고차 구속 모드 합성법)

  • Kang, Jeong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.536-542
    • /
    • 2000
  • The present paper introduces a new fixed interface component mode synthesizing technique based on the notion of higher-order field-consistency. The present technique employs higher-order residual constraint modes in addition to lower fixed interface normal modes while consistency in matching field variables at the substructure interface is maintained. The present field-consistency approach does not increase the size of the synthesized system even if higher-order residual constraint modes are included. A new field-consistent higher-order synthesis technique is first presented and a numerical example is given to verify the present method.

  • PDF

Design of a Fuel Cell Power Conditioning System for Online Diagnosis and Load Leveling

  • Nguyen, Thanh-Tuan;Doan, Van-Tuan;Choi, Woojin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.695-703
    • /
    • 2016
  • A fuel cell power conditioning system for online diagnosis and load leveling under the condition of varying load is developed in this study. The proposed system comprises a unidirectional boost converter and a bidirectional buck-boost converter with a battery. The system operates in two different modes. In normal mode, the bidirectional converter is utilized for load leveling; in diagnostic mode, it is utilized to control load voltage while the boost converter generates perturbation current to implement the online diagnosis function through in-situ electrochemical impedance spectroscopy (EIS). The proposed method can perform EIS for a fuel cell under varying-load conditions with no influence on the load. The validity and feasibility of the proposed system are verified by experiments, and the design procedure of the proposed system is detailed.

Dynamic stiffness matrix of an axially loaded slenderdouble-beam element

  • Jun, Li;Hongxing, Hua;Xiaobin, Li
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.717-733
    • /
    • 2010
  • The dynamic stiffness matrix is formulated for an axially loaded slender double-beam element in which both beams are homogeneous, prismatic and of the same length by directly solving the governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial force are taken into account in the formulation. The dynamic stiffness method is used for calculation of the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given for a particular example of axially loaded double-beam system under a variety of boundary conditions, and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The effects of the axial force and boundary conditions are extensively discussed.

Dynamic Characteristic Analysis of Tilting Turret Systems Using Finite Element Modeling (유한요소 모델링을 이용한 틸팅터릿 시스템의 진동특성해석)

  • 정상화;김재열;김상석;나윤철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.60-70
    • /
    • 2001
  • In multi-purpose lathe, the design of tilting turret slide system has an important and critical role to enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret unit is modeled by considering the element dividing, material proprties, and boundary conditions with PATRAN. Normal mode and frequency analysis of each structures such as saddle, cared, and turret are simulated by NASTRAN, for the purpose of developing the effective design. The results of mode analysis and frequency analysis are visualized with PATRAN, and the design method which can solve the resornance problem by eigenvalues and eigenvectors of each axis is developed as well.

  • PDF

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

Estimations of the Hysteretic Damping by Controlled Joint Flexibilities (결합부 유연성에 따른 감쇠거동에 관한 고찰 : 히스테레틱 감쇠)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.258-264
    • /
    • 1999
  • The purpose of this paper is to investigate the damping behavior of a flexible joint. The slip at a structrual joint is selected at the tips of two identical cantilever beams adjoining each other. Both the direction of normal force and its magnitude varies due to the global deformation of the structure from mode to mode in the friction model. The friction dependent on vibration displacements resultsin the same functional behavior of the hysteretic material damping. Linearized energy loss factors are obtained as functions of both linear and torsional spring stiffness for their groups of symmetric and anti-symmetric modes, respectively. Experimental measurements as made for comparisons with analytical estimations by controlling the magnitude of fastening torque in the fastener, Hi-Lite. Trends on damping levelsmeasured in a very common vibration test method make an excellent agreement on the estimated damping levels.

  • PDF

Analysis of FE/test result for con011ing the squeal noise of wheel brake system (휠제동장치의 스퀼소음 제어를 위한 해석결과 분석)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.595-600
    • /
    • 2009
  • Passengers in a vehicle feel uncomfortable due to squeal noise. Squeal noise, a kind of self-excited vibration, is generated by the friction force between the disc and the pad of the automobile. In this paper, modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. Finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM. The complex eigenvalue analysis results compared with braking test. The analysis results show good correlation with braking test for the squeal frequency at an unstable mode.

  • PDF