Epilepsy is one of the most prevalent neurological diseases. Electroencephalogram (EEG) signals are widely used for monitoring and diagnosis tool for epileptic seizure. Typically, a huge amount of EEG signals is needed, where they are visually examined by experienced clinicians. In this study, we propose a simple automatic seizure detection framework using intracranial EEG signals. We suggest a sparse approximation based classification (SAC) scheme by solving overdetermined system. L1-norm minimization algorithms are utilized for efficient sparse signal recovery. For evaluation of the proposed scheme, the public EEG dataset obtained by five healthy subjects and five epileptic patients is utilized. The results show that the proposed fast L1-norm minimization based SAC methods achieve the 99.5% classification accuracy which is 1% improved result than the conventional L2 norm based method with negligibly increased execution time (42msec).
통신 시스템의 성능을 향상시키는 핵심 문제 중에 하나인 채널을 추정하는 문제는 다양한 분야에서 연구되고 있다. 채널의 sparse한 특징으로 인해 기존의 linear square나 minimum mean square error보다 발전된 $l_1$-norm minimization 방법 등이 많이 연구되고 있다. 이에 본 논문은 sparse한 채널의 특징과 천천히 변화하는 채널환경 특징을 이용하여 기존의 방법에 비해 더 높은 성능의 채널 추정 기법을 연구한다. 천천히 변화하는 채널환경의 특징으로 인해 이전 채널 정보를 현재 채널 추정에 사용할 수 있고 sparse한 채널의 특징으로 $l_1$-norm minimization을 사용할 수 있다. 이러한 두 가지의 정보를 이용하여 weighted $l_1$-norm minimization 이용한 support detection후 MMSE를 이용한 채널 추정기법을 연구한다.
MCO 문제의 해석을 하기 위한 weight P-norm방법을 연구하여 새로운 non-inferior해를 구하였다. Weight 최소화방법을 MOSFET NAND 게이트에 적용하여 최적 non-inferior해를 구하였다. 또한 본 논문에서 응용한 최소화방법은 목적함수가 non-convex일때도 적용된다. 본 논문의 최소화 방법의 결과를 Lightner의 결과와 비교하여 효율성을 입증하였다.
수중 표적의 기어박스 및 보조 장치 등으로부터 방사되는 토널 신호의 주파수 성분은 처리하고자 하는 주파수 대역에 비해 상대적으로 적어 희소신호로 모델링될 수 있다. 근래에 토널 신호의 주파수 희소성을 이용하여 빠른 시간 내에 적은 수의 관측치로 토널 주파수를 복원하는 압축센싱 기반의 연구가 활발히 진행되고 있다. 기존의 방법들은 이산(discrete) 주파수 영역에서 주파수를 검출하기 때문에 이산화로 인한 basis mismatch error가 불가피하다. 본 논문에서는 atomic norm minimization을 이용하여 적은 수의 관측치로 연속(continuous) 주파수 영역에서 토널 주파수를 검출하는 기법을 제안한다. 모의실험을 통해 기존의 기법들에 비해 제안하는 기법의 성능이 정확성과 평균제곱오차 측면에서 우수함을 확인하였다.
Journal of Advanced Marine Engineering and Technology
/
제37권7호
/
pp.743-751
/
2013
In this paper, an approach to deal with model uncertainty using norm-optimal iterative learning control (ILC) is mentioned. Model uncertainty generally degrades the convergence and performance of conventional learning algorithms. To deal with model uncertainty, a worst-case norm-optimal ILC is introduced. The problem is then reformulated as a convex minimization problem, which can be solved efficiently to generate the control signal. The paper also investigates the relationship between the proposed approach and conventional norm-optimal ILC; where it is found that the suggested design method is equivalent to conventional norm-optimal ILC with trial-varying parameters. Finally, simulation results of the presented technique are given.
탄성파 역산에 있어서 가장 널리 사용되는 최소자승($l^2$ norm)해는 이상치(outlier)에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 $l^1$ norm을 최소화하는 해는 이상치에 강인한 면을 보이나 일반적으로 좀 더 많은 계산이 필요하다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)을 이용하면 이러한 $l^1$ norm 문제의 근사해(approximate solution)를 효율적으로 구할 수 있다. 본 논문에서는 작은 크기의 잔여분은 $l^2$ norm으로 처리하며, 큰 크기의 잔여분은 $l^1$ norm으로 처리하는 하이브리드 $l^1/l^2$ norm 최소화를 IRLS 방법에 쉽게 적용하는 구현 기법을 소개한다. 소개된 알고리즘은 특이치(singularity)처리를 위한 임계값의 결정에 민감하게 반응하는 기존의 $l^1$ norm IRLS 방법과는 달리 임계값 결정에 상관없이 늘 강인한 역산의 특성을 보여준다.
수중에서의 일시적인 신호는 복잡하고, 변화가 심하며, 비선형적이므로 신호의 패턴을 정확히 모델링하기 어렵다. 본 논문에서는 수중 신호 중 하나인 고래 소리를 선택하여 음성분석 기법에 많이 사용하는 Cepstral 분석에 의한 MFCC 추출법을 이용하여 분석하였고, MFCC와 $L_2$-norm 최소화 기법을 이용하여 고래소리를 재생하였다 실험 분석에 사용된 고래의 종류는 혹등고래(Humpback whale), 참고래(Right whale), 대왕고래(Blue whale), 귀신고래(Gray whale), 밍크고래(Minke whale) 등 5종으로서 과거 한반도 동해안에 출몰한 적이 있는 고래들이다. 원본 고래소리에서 MATLAB프로그래밍을 이용하여 20차 MFCC계수들을 추출한 후 이를 가중 $L_2$-norm 최소화를 이용한 MFCC역변환을 통해 재생한다. 최종적으로 가중치가 3~4의 값에서 고래소리 재생이 가장 적합함을 알 수 있었다.
탄성파 역산에 있어서 최소자승(${\ell}^2-norm$)해는 큰 오차에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 ${\ell}^p-norm$ ($1{\le}p<2$)을 최소화하는 해는 잡음에 강인한 해를 보이나 보통은 좀 더 많은 계산이 요구된다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)은 이러한 ${\ell}^p-norm$ 문제의 근사해를 효율적으로 구할 수 있도록 해준다. 본 논문에서는 작은 크기의 잔여분은 ${\ell}^2-norm$으로 큰 크기의 잔여분은 ${\ell}^2-norm$으로 적용되는 하이브리드 ${\ell}^1/{\ell}^2$최소화를 IRLS 방법에 쉽게 적용하는 기법을 소개한다. 모의 자료와 실제 현장자료에의 적용결과 큰 잡음이 포함된 경우 최소자승해보다 하이브리드 방법의 경우에 개선된 결과를 보임을 확인할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3194-3216
/
2018
Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제25권3호
/
pp.107-116
/
2021
We introduce optimization algorithms using Bregman Divergence for solving non-negative matrix factorization (NMF) problems. Bregman divergence is known a generalization of some divergences such as Frobenius norm and KL divergence and etc. Some algorithms can be applicable to not only NMF with Frobenius norm but also NMF with more general Bregman divergence. Matrix Factorization is a popular non-convex optimization problem, for which alternating minimization schemes are mostly used. We develop the Bregman proximal gradient method applicable for all NMF formulated in any Bregman divergences. In the derivation of NMF algorithm for Bregman divergence, we need to use majorization/minimization(MM) for a proper auxiliary function. We present algorithmic aspects of NMF for Bregman divergence by using MM of auxiliary function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.