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ABSTRACT. We introduce optimization algorithms using Bregman Divergence for solving
non-negative matrix factorization (NMF) problems. Bregman divergence is known a gener-
alization of some divergences such as Frobenius norm and KL divergence and etc. Some al-
gorithms can be applicable to not only NMF with Frobenius norm but also NMF with more
general Bregman divergence. Matrix Factorization is a popular non-convex optimization prob-
lem, for which alternating minimization schemes are mostly used. We develop the Breg-
man proximal gradient method applicable for all NMF formulated in any Bregman diver-
gences. In the derivation of NMF algorithm for Bregman divergence, we need to use ma-
jorization/minimization(MM) for a proper auxiliary function. We present algorithmic aspects
of NMF for Bregman divergence by using MM of auxiliary function.

1. INTRODUCTION

Non-negative matrix factorisation (NMF) has popular application for machine learning,
computer vision, Bio-informatics and many others. Matrix Factorization is a popular non-
convex optimization problem, for which alternating minimization schemes are mostly used.
We review and compare various optimization algorithms for non-negative matrix factoriza-
tion. The computation of NMF remains challenging and expensive due to the constraints.The
most frequently used techniques for solving matrix factorization problems involve alternating
updates similar to GaussSeidel type methods.

We consider a wide family of iterative algorithms for non-negative matrix factorization
(NMF) and related problems, subject to additional constraints such as sparsity and/or smooth-
ness. We consider a wide class of cost functions or divergences leading to generalized multi-
plicative algorithms with regularization and/or penalty terms.

Some algorithms can be applicable to not only NMF with Frobenius norm but also NMF
with more general Bregman divergence. We develop one united algorithm applicable for all
NMF formulated in any Bregman divergences. Bregman divergence is known a generalization
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of some divergences. The range of cost functions in Bregman divergence includes large number
of generalized divergences, such as the squared weighted Euclidean distance, relative entropy,
Kullback-Leibler I-divergence, α- and β-divergences and Csiszar f -divergence [4, 6, 7, 9,
10, 19, 20]. Various Bregman divergences, such as Frobenius norm and KL divergence, have
been used in a wide range of applications, including text clustering, signal processing, image
processing, and music analysis[9, 20]. NMF with the β-divergence has been widely used in
music signal processing in particular, for transcription and source separation[8, 9, 20].

Bregman divergences have been used to derive an exact characterization of the difference
between the two sides of Jensens inequality. In the derivation of NMF algorithm for Breg-
man divergence, we need to use surrogate majorization/minimization(MM) concept. Surrogate
maximization (or minimization) (SM) algorithms are a family of algorithms that can be re-
garded as a generalization of expectation-maximization (EM) algorithms [22].

We discuss one united framework applicable for all NMF using any Bregman divergences.
We extend our methods in the framework of Bregman divergence so that they are more general
hence admit potentially more applications. We develop the inertial version of the Bregman
proximal gradient method applicable for all NMF formulated in any Bregman divergences. In
the derivation of NMF algorithm for Bregman divergence, we need to know how to choose
a proper auxiliary (surrogate) function for MM step. We will present and review algorith-
mic aspects of NMF for Bregman divergence by using MM algorithm of auxiliary (surrogate)
function.

2. RELATED WORKS AND PROBLEM DEFINITION

In NMF, a data matrix V with non-negative entries of dimension M ×N is factorized into
a matrix W of dimension M ×K and H of dimension K ×N such that WH approximately
equals V . The entries in W and H must be non-negative, and we assume K is small relative
to M and N (i.e., V ≈WH). The various divergences can be used as cost function for NMF.

In order to measure the discrepancy between the input data and the low rank approximation,
the Kullback-Leibler (KL) divergence is one of the most widely used objective function for
NMF [11]. The quality of the approximation is measured using an objective function, which
typically has the form

D(V |WH) =
∑
i=1

∑
j=1

d(Vij |(WH)ij), (2.1)

where d(x|y) is a scalar cost function and the entries in W and H must be non-negative. We
will define the cost function in terms of Bregman divergence.

2.1. Bregman divergence. Bregman divergences are a general class of distortion functions,
which include squared Euclidean distance, KL-divergence, Itakura-Saito distance, etc., as spe-
cial cases [6, 7, 9, 11]. Bregman divergences may be considered a generalization of squared
Euclidean distance because of many shared properties. Bregman divergences are not symmet-
ric, and do not satisfy the triangle inequality.

What we intended by cost function is a positive-valued function with a single minimum. A
popular cost function is the β divergence [4, 9]. Divergences are considered as (dis)similarity
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measures. The divergence has the following properties: d(x|y) ≥ 0 for all x, y ≥ 0 and
d(x|y) = 0 if and only if x = y. However, a divergence does not necessarily satisfy the
triangle inequality and the symmetry axiom of the distance or metric definition [4, 10]. For
β ∈ R− {0, 1}, the β- divergence dβ(x|y) is defined by

dβ(x|y) =
xβ

β(β − 1)
+
yβ

β
− xyβ−1

β − 1

This definition is extended to β ∈ {0, 1} in the obvious way, by taking limits. The three
divergence functions most commonly used with NMF are special cases of the β-divergence:

(1) β = 2 (Euclidean): d(x|y) = 1/2(x− y)2

(2) β = 1 (Kullback-Leibler): d(x|y) = x log x
y − x+ y

(3) β = 0 (Itakura-Saito): d(x|y) = x
y − log x

y − 1.
In many applications, such as image analysis, pattern recognition and statistical machine learn-
ing we use the information-theoretic divergences rather than Euclidean squared or lp-norm
distances [4]. The Bregman divergence encompasses the β-divergence in a natural way by
defining the kernel function Φ [10]. The kernel function Φ : S → R is a continuously differ-
entiable strictly convex function where S be a convex subset of a Hilbert space. The Bregman
divergence D : S ×S → R+ (where R+ is the set of non-negative real numbers) is defined by

Dφ(x|y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉,
where∇φ(y) stands for the gradient of φ evaluated at y and 〈·, ·〉 is the standard Hermitian dot
product.

Element-wise Bregman divergences are a subclass of Bregman divergences for which Φ is
the sum of N scalar, continuously differentiable and strictly convex element-wise functions:
Φ(x) =

∑
i φ(xi) for x = (x1, · · · , xn). Then we have

DΦ(x|y) =
∑
i=1

dφ(xi|yi).

where dφ(x|y) = φ(x)−φ(y)−φ′(y)(x− y) and thus, the divergence is element-wise. When
φ is strictly convex and differentiable. A differentiable function of one variable is convex on an
interval if and only if its graph lies above all of its tangents. It is easy to show that dφ(x, y) ≥ 0
and dφ(x, y) = 0 if and only if x = y.

We show that the Bregman divergence encompasses the β-divergence and Amari’s alpha
divergences in a natural way by defining the the kernel function[4, 5, 6, 7]. Let the kernel
function φ : R+ − {0} → R be the function defined as:

φβ(x) =


− log x+ x− 1, β = 0

x log x− x+ 1, β = 1
xβ

β(β−1) −
x

β−1 + 1
β , otherwise.

If we rewrite it as φ(x) = x(xβ−1−1)
β(β−1) + (1−x)

β , then we have a family of Amari’s alpha diver-
gences (β = (1 + α)/2).
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2.2. Block coordinate descent(BCD).
Block coordinate descent. Block coordinate descent (BCD) (more precisely, block coordinate
update) is very general and widely used for solving both convex and nonconvex problems with
multiple blocks of variables. We consider the optimization problem

min
x∈X

F (x1, · · · , xs) ≡ f(x1, · · · , xs) +

s∑
i=1

ri(xi)

where variable x is decomposed into s blocks x1, · · · , xs, the set X of feasible points is as-
sumed to be a closed and block multiconvex subset. f is assumed to be a differentiable and
block multiconvex function. We call a function f block multiconvex if, for each i, f is a convex
function of xi while all the other blocks are fixed. The block coordinate descent (BCD) method
of GaussSeidel type minimizes F cyclically over each of x1, · · · , xs.

The projected coordinate descent algorithm is an iterative method for optimization problems.
In each iteration, one coordinate is updated, while the other coordinates remain fixed such as

ht+1
k = arg min

hk≥0
f(ht1, · · · , hk, · · · , htK)

ht+1
l = htl for l 6= k.

Typically, there are three main types of BCD methods: classical BCD, proximal BCD and
proximal gradient BCD [13]. The classical BCD methods alternatively minimize the block
i functions of the objective. The proximal BCD methods improve the classical BCD meth-
ods by coupling the block i objective functions with a proximal term. The proximal gradient
BCD methods minimize a standard proximal linearization of the objective function. These
BCD methods belong to a more general framework, named the block successive upper-bound
minimization algorithm. It is closely related to the majorization/minimization(MM) algorithm
[13].
Inertial Method. Incorporating inertial force is a popular and efficient method to accelerate the
convergence of first-order methods. The inertial method adds to the new direction a momentum
term equal to the difference of the two previous iterates; this is also known as extrapolation.

3. OPTIMIZATION ALGORITHM IN THE FRAMEWORK OF BREGMAN DIVERGENCE

We extend our methods in the framework of Bregman divergence so that they are more
general hence admit potentially more applications.

3.1. Proximal distance algorithms. Proximal distance algorithms combine the classical penalty
method of constrained minimization with distance majorization[14]. For convex problems,
proximal distance algorithms reduce to proximal gradient algorithms and therefore enjoy well
understood convergence properties.

The inertial versions for the proximal and proximal gradient BCD methods in the framework
of Bregman divergence have been introduced in [1, 13]. The proximal method minimizes sums
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of differentiable and non-differentiable convex functions f = g + h such as

min
x∈Rn

{h(x) + g(x)} (3.1)

where g is differentiable and convex, and h is closed and convex [12, 13]. Here nondifferen-
tiable term h can be simple but has inexpensive prox-operator.

Let Proxt be the following proximal map

proxt(x) = arg min
z∈Rn
{h(z) +

1

2t
‖z − x‖2}.

We consider the use of Bregman distances in constrained optimization through the proximal
minimization method. We generalize the proximal minimization algorithm by replacing the
quadratic term by Bregman divergence.

For a given v ∈ Ei, and a positive number t, the Bregman proximal map of a function φ is
defined by

proxt(v) = arg min
u∈Rn

{h(u) +
1

2t
Dφ(u|v)}.

Let us consider how to construct proximal point algorithms with Bregman functions. At the
kth step of a proximal minimization algorithm (PMA), we minimize the function

Gk(x) = h(x) +
1

2tk
φ(x, xk−1).

We review the well-know proximal gradient method and its variant, namely, the Bregman
proximal gradient method. The Bregman proximal mapping is defined by replacing the Eu-
clidean distance with the Bregman distance. Now we consider the proximal gradient problem
such as

xk+1 = arg min
x∈C

{
〈x,∇f(xk)〉+

1

αk

‖x− xk‖22
2

}
.

One employs a majorize-minimize approach. By definition of the Euclidean projection, this
can also be written as

xk+1 = arg min
x∈C

‖(x− xk) + αk∇f(xk)‖22.

Let L = 1/αk. If we still wish to apply a gradient type method to minimize such a function,
L-smoothness can sometimes be forced upon f . This is sufficient in principle as the theory for
constrained first order methods only requires the gradients to be L-Lipschitz. On the projected
gradient descent (PGD), we showed that a way to solve the constrained minimization problem
with a differentiable f is to follow the iteration

xk+1 = πC(xk − αk∇f(xk)),

where πC denotes the Euclidean projection onto the constrain domain C.
One reason why one might want to consider another distance-like function to penalize how

much we move in a particular direction is that doing so can better reflect what we may know
about the geometry ofC which can make steps easier to compute or convergence to a minimizer
faster. In order to broaden the applicability of this method, we consider a class of Bregman
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proximal gradient methods. This method adopts the more general Bregman regularization in-
stead of the Euclidean distance. The inertial version of the Bregman proximal gradient method
for relative-smooth nonconvex optimization was studied [21]. Proximal gradient BCD methods
update using a linearization of f . The Bregman proximal gradient map of a pair of functions
(g is continuously differentiable) is defined by

Gprox(u1;∇g(u2)) = arg min
u
h(u) + 〈∇g(u2), u〉+

1

β
Dφ(u, u1)

For convex h and Bregman kernel φ, Bregman proximal mapping is defined by

proxh(y, a) = arg min
x

(
h(x) + aTx+ dφ(x, y)

)
= arg min

x

(
h(x) + (a−∇φ(y))Tx+ φ(x)

)
= proxh(x− a)

where first argument y must be in int(dom(φ)) and second argument a can take any value.
Well use this only if for every y and a, a unique minimizer x ∈ int(dom(φ)) exists.

Let us now consider a µ-strongly convex and differentiable function φ and the associated
Bregman divergence Dφ. If we use this as divergence, the GPGD iteration is

xk+1 ∈ arg min
x∈C

{
〈x,∇f(xk)〉+

1

αk
Dφ(x, xk)

}
(3.2)

for αk > 0.

3.2. Majorization/minimization(MM) approach for Bregman divergence. The principle
of iteratively minimizing a majorizing surrogate of an objective function is often called ma-
jorization/minimization (MM)[18, 22]. We note that the proximal gradient method can be
interpreted as an example of MM algorithms which includes the gradient method, Newtons
method, and the EM algorithm. The EM algorithm from statistics is a special case [22]. Sur-
rogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be
regarded as a generalization of expectation-maximization (EM) algorithms [22].

We call any algorithm based on this iterative method an MM algorithm. The MM principle
is not an algorithm, but a prescription or principle for constructing optimization algorithms.
The MM framework is a two-step approach:

(1) Majorization: Find a majorizer, that is, a function that is equal to the objective function
at the current iterate while being larger everywhere else on the feasible domain, and

(2) Minimization: minimize the majorizer to obtain the next iterate.
Let us consider the majorization-minimization scheme and its variants. This procedure relies

on the concept of an auxiliary (surrogate) functions A function g(x, x̃) is said to be an auxiliary
(surrogate) function) for f(x) if the following two conditions are satisfied:

g(x, x) =f(x), (3.3)

g(x, x̃) ≥f(x) (3.4)
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for all x̃. If g is an auxiliary function, then f is non-increasing under the update

xt+1 = arg min
h
g(x, xt).

We can directly prove that

f(xt+1) ≤ g(xt+1, xt) ≤ g(xt, xt) = f(xt). (3.5)

Construction of the auxiliary function is key to the algorithms in turning an otherwise in-
tractable optimization problem into a tractable one. A good auxiliary function should prefer-
ably have a closed-form solution. The closer is the auxiliary function to f , the more efficient is
the algorithm.

If xt is a local minimum of g(x, xt), then f(xt+1) = f(xt). We can obtain a sequence of
estimates that converge to a local minimum xmin = arg minx f(x). By defining the appropriate
auxiliary functions g(x, xt), the update rules follow from (3.5). We note that the derivation of
various proximal distance algorithms introduced in subsection 3.1 can be interpreted as the
majorization/minimization (MM) by defining proper auxiliary functions [18]. When f is twice
differentiable, a quadratic auxiliary function is defined by

g(x, u) = f(u) + (x− u)T∇f(u) +
1

2
(x− u)TH(x− u).

where H is a positive semi-definite Hessian. It has the auxiliary properties. Such auxiliary
functions appear frequently in the statistics and machine learning literature. When f is differ-
entiable and∇f is L-Lipschitz, f admits the following auxiliary function

g(x, u) = f(u) + 〈x,∇f(u)〉+ LDφ(x, u). (3.6)

By finding optimal solution minimizing g(x, u) with respect to x, we can obtain the GPGD
iteration (3.2).

4. NMF METHODS USING BREGMAN DIVERGENCE

In this section, we consider a wider class of NMF problems under Bregman divergence. Var-
ious algorithms for nonnegative matrix factorization (NMF) with variant Bregman-divergence
have been introduced [1, 5, 9, 11]. Some algorithms can be applicable to not only NMF with
Frobenius norm but also NMF with more general Bregman divergence. They used Taylor se-
ries expansion to derive the element-wise problem [16]. Column-wise update algorithms for
solving Bregman divergence NMF was introduced by [15]. We will propose a unified method
that globally converges to a stationary point of the optimization problem in Eq. (2.1) in a block
mirror descent method with Bregman divergence. In this section, we present algorithmic as-
pects of NMF for Bregman divergence by using majorization/minimization(MM) of auxiliary
(surrogate) function. We can see that the auxiliary function for an objective function is not
unique. A main issue is how to choose a proper the auxiliary function for NMF with more
general Bregman divergence.

We note that D(V |WH) does not possess the Lipschitz smoothness property [11]. The
notion of relative smoothness is a generalization of the Lipschitz smoothness [17]. We use
the notion of smooth adaptable functions introduced in [3]. A pair (f, κ) is called L-smooth
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adaptable on C = int dom(κ) if there exists L > 0 such that Lκ − f and Lκ + f are convex
on C. Then we have Df (x, y) ≤ LDκ(x, y), even though f needs not be convex. Let us
define the objective function f(h) =

∑
k d(vk|[Wh]k) in Eq (3.1). For KL divergence, it

is known that the KL objective function is a relative smooth function[11]. It is explained
how to find a function κ(x) to which the function f(x) is L-smooth relative [2, 3, 17]. It is
κ(h) =

∑
j=1 log hj . Then there is a scalar L for which

f(x) ≤ f(u) + 〈x,∇f(u)〉+ LDκ(x, u).

Then we can derive a proper auxiliary function g(x, u) for Bregman proximal gradient as Eq.
(3.6). The bound L can be computed by L = ‖v‖1.

Jensens inequality provides a natural mechanism to obtain auxiliary function for convex
functions. Suppose a function f : R→ R is convex . We can define an auxiliary function such
as

g(u,w) =

N∑
i=1

ciwi
cTw

f

(
cTw

wi
ui

)
for u,w ∈ Rn. We can see that it has auxiliary properties (3.3) and (3.4) by using Jensens
inequality.

In order extend the optimization algorithm using auxiliary function in a block coordinate
descent (BCD) framework, the auxiliary function g are separable into n components such as

g(u, v) =
n∑
i=1

gi(ui, vi) + C

. for u, v ∈ Rn where C is constant with respect to u.
We consider how to choose a proper kernel function κ generating Bregman distances to han-

dle optimization problem when f is not convex. First, when f is concave and also differentiable
on its domain, it can be linearized by first-order Taylor approximation, as

f(u) ≤ f(v) +∇f(v)T (u− v). (4.1)

Then we construct an auxiliary function by using Eq. (4.1). Since most continuous functions
can be expressed as the difference of two convex functions, we can often use this trick to
construct an auxiliary function. If for any f(u) = f1(u)−h(u) where both f1(u) and h(u) are
convex, we can write

f(u) ≤ f1(u)− h(v)−∇h(v)T (u− v).

The use of differences of convex functions is a very important strategy in convex optimization
and has received much attention recently in machine learning.

We will explain how an separable auxiliary function f(h) for the specific case of the β-
divergence is constructed by modifying the results in [9]. We have the β- divergence dβ(x|y)

decomposed into dβ(x|y) = ďβ(x|y) + d̂β(x|y) + d̄(x|y), where ď is convex function of y, d̂
is a concave function of y and d̄ is a constant of y. Let ṽ = w̃H and w̃ be such that ṽn ≥ 0 for
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all n and w̃k > 0 for all k. Then the function

g(w|ŵ) =
∑
n

{∑
k

w̃khkn
ṽn

ď(vn|ṽn
wk
w̃k

) + d̂(vn|w̃n) + d̂′(vn|ṽn)
∑
k

(wk − w̃k)hkn + d̄(vn)

}
is an auxiliary function to f(h). The auxiliary function g(x|x̃) is by construction separable in
functions of the individual coefficients xk of x, which allows to decouple the optimization. The
Hessian matrix∇2

hk
g(h|h̃) is a diagonal matrix with positive value.

We may write
g(x|x̃) =

∑
k

gk(xk|x̃) + C

where C is a constant with respect to h. The gradient of the auxiliary function is given by
∇xkg(x|x̃) = ∇xkgk(x|x̃).

The derivative of the criterion D(V |WH|) with respect to θ can be expressed as the dif-
ference of two nonnegative function ∇θD(θ) = ∇+

θ D(θ) − ∇−θ D(θ). Then, a multiplicative
algorithm simply writes

θ ← θ
∇−θ D(θ)

∇+
θ D(θ)

which ensures nonnegativity of the parameter updates, provided initialization with a nonnega-
tive value.

5. CONCLUSION

We have presented and reviewed algorithmic aspects of NMF with using Bregman Diver-
gence. We considered optimization algorithms using Bregman Divergence for solving non-
negative matrix factorization (NMF) problems. We introduced one united algorithm applica-
ble for all NMF formulated in any Bregman divergences. We discussed the unified inertial
version of the Bregman proximal gradient method applicable for all NMF formulated in any
Bregman divergences. We proposed NMF algorithm for Bregman divergence by using ma-
jorization/minimization(MM) of auxiliary (surrogate) function. We need to resolve algorithmic
problems for NMF. The related issues are the investigation into the presence of local minima in
the cost functions, and ways to avoid them. We need to develop some efficient algorithms for
the Bregman proximal gradient method applicable for all NMF and analyze the convergence
and performance.
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