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1. Introduction

Epilepsy is a condition characterized by 

repeated seizures due to a disorder in the brain 

cells. It is one of the most common chronic 

neurological disorders and affects people of all 

ages. Approximately 50 million people 

worldwide have epilepsy [1]. Epileptic seizures 

reflect the signs of an excessive and 

hypersynchronous activity of neurons in the 

brain [2]. It can be observed by brain signals 

such as electroencephalogram (EEG). EEG 

signals are recorded on the scalp, which 

provides the electrical brain activity generated 

by billions of neurons and glia cells. 

The surface-recorded EEG is a clinical 

standard for confirming epileptic activity [3] and 

localization of the epileptic focus [2]. Further, 

intracranial EEG (iEEG) which is observed by 

implanted electrodes can be used for 

pre-surgical evaluation of epilepsy patiens [4]. 

However, massive amount of EEG recordings is 

visually examined by highly trained 

professionals for diagnosis of epileptic seizure 

in general. This process is time-consuming, 

error-prone, and expensive. Therefore, 

computer-aided automatic detection of 

epileptic seizure can help clinicians reduce their 

miss detection rate.

 EEG based epileptic seizure detection has 

been widely studied for many years. To address 

variations of signal amplitude and frequency, 

line length feature was adopted with low 

computational cost [5]. Nonlinear features such 
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as approximate entropy [6], largest Lyapunov 

exponent [7] and empirical mode 

decomposition (EMD) [8] were applied for 

automatic seizure detection problem.

In this study, we propose a sparse 

approximation based classification (SAC) 

scheme by solving a sparse representation of 

test samples using a collection of training 

samples. We adopt fast L1-norm minimization 

algorithms such as Homotopy [9] and FISTA [10] 

for sparse representation. In the proposed 

detection scheme, the conventional hand-craft 

feature extraction and/or dimensionality 

reduction methods are not needed. Therefore, 

we can save the time cost for those steps and 

parameter optimizations. In addition, thanks to 

the fast L1-norm minimization algorithms 

within the proposed scheme, the processing 

time for each testing is very fast and real-time 

detection can be applicable in practice.

To evaluate the proposed method we 

compare classification performance in terms of 

accuracy, sensitivity, specificity and 

computation time between the proposed SAC 

and conventional L2-norm based least square 

approximation methods.

2. Material and Methods

2.2 Clinical Data

The dataset used in this study was obtained 

from the Department of Epileptology, Bonn 

University, Germany. This dataset is publicly 

available, where detailed information is 

provided in [5]. The complete dataset consists of 

five sets (A-E), each containing 100 

single-channel EEG segments of 23.6-sec 

duration. These segments were randomly 

Fig. 1. One segment example of 23.6-sec EEG time samples (4097 samples) for five datasets (sets A-D). Sets A and 
B obtained from normal EEG segment during eyes open and closed respectively. Sets C, D and E obtained from 
iEEG segment during seizure activity within the epileptogenic zone (set E), and seizure-free intervals within the 
epileptogenic zone (set C) and opposite the epileptogenic zone (set D). The amplitude unit for all five datasets is 
microvolt.
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selected and cut out from continuous 

multichannel EEG recordings from multi 

subjects. 

Figure 1 visualizes the example segments of 

five datasets. The first two sets, A and B, 

consisted of surface EEG segments that are 

collected from five healthy subjects using a 

standardized electrode placement scheme. Sets 

A and B contain EEG segments when the 

subjects are relaxed and awake state with eyes 

open and eyes closed respectively. The data sets 

C, D and E consisted of intracranial EEG (iEEG) 

recordings of five epileptic patients undergoing 

pre-surgical diagnosis. For the sets C and D, 

iEEG recordings are performed during 

seizure-free intervals (interictal periods) using 

depth electrodes placed within the 

epileptogenic zone and opposite the 

epileptogenic zone at the symmetric 

hippocampal formations in brain respectively 

(see Figure 2 of [4]). On the other hand, data set 

E was recorded during the seizure activity (ictal 

periods) from within the epileptogenic zone.

All data sets were recorded with the same 

128-channel amplifier system using an average 

common reference and digitized at 173.61 

samples per sec using 12-bit resolution. Using a 

fourth order Butterworth filter we perform the 

band pass filtering with 0.1-49 Hz cutoff 

frequencies. 

2.2 Sparse Representation based Classification

Here we briefly introduce general framework 

of the sparse representation based classification 

(SRC) scheme. The basic idea of SRC is aiming 

to find most compact representation of a testing 

sample   via the so-called sparsification 

(or sparse representation) step, i.e., 

where  is a training dictionary. Each component 

matrix  consists of n 

training samples 
1m´Îa ¡  of class  

1, 2, ...,i C= . Usually feature extraction and/or 

dimensionality reduction method is applied to 

original high-dimensional signal space to form 

low-dimensional feature space. Therefore, the 

number of column Cn in A is much larger than 

the feature dimension m, i.e., A is an 

overcomplete dictionary. To solve the 

sparsification step of a testing sample with a 

given dictionary, following formulation can be 

used [11]:

1
min subject to .=
x
x y Ax (1)

After finding the sparse coefficient vector x 

by the sparsification step, the class label of the 

testing sample can be determined via a simple 

identification step: 

class ( ) min ( ),ii
r=y y (2)

where   ,     is the scalar 

coefficient vector corresponding to the class I.

2.3. Sparse Approximation based 

  Classification (SAC) for Overdetermined Systems

Since EEG signals are non-stationary and 

testing sample y is not measured data from the 

training samples in dictionary A, the testing 

sample y cannot be exactly represented with the 

t r a i n i n g     samples, i.e.,  Therefore, 

(1) is not sufficient form for practical 

applications and we consider the following 

approximation problem

,+y = Ax r (3)

where r is the unknown vector that accounts for 

model errors or disturbances. For the 

underdetermined system of (3), following 
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L1-norm optimization can still recover the 

sparse solution

1 2
min subject to ,e- £
x
x y Ax (4)

w h e r e   is a predefined tolerance of 

approximation error.

As shown in Figure 1, the iEEG segments 

show noticeable difference in time domain 

between the interictal and ictal (sets D and E). 

Therefore, in this study, we use the iEEG time 

samples without any further feature extraction 

steps to form the dictionary A in (4). In this 

case, we should consider the overdetermined 

system in (4). It is because the number of rows 

in A, i.e., the number of time samples m = 4097, 

is larger than the number of columns in A, i.e., 

the number of training segments  Cn = 180 (for 

the case of C = 2 and 10-fold cross validation). 

This means that the dictionary is a tall matrix 

unlike the sparsification step in a conventional 

SRC.

For this overdetermined case, conventional 

L2-norm minimization, i.e., least square 

method, can be normally used to provide closed 

form solution by using the so called pseudo 

inverse method:

( ) 1ˆ .T T-
=x A A A y (5)

However, L1-norm criterion is preferred 

method for noise contaminated approximation 

problem in overdetermined system. Therefore, 

in this study, we aim to apply the L1-norm 

minimization based sparse approximation based 

classification (SAC) scheme for overdetermined 

system. This means after obtaining the 

recovered coefficient x by (4), we perform 

identification step (2) for classification purpose. 

Figure 2 shows the concept of the proposed 

SAC for overdetermined system. The dictionary 

is simply formed by listing each class of EEG 

training signals, where the sparse coefficient 

e

Fig. 2. Sparse approximation model for overdetermined 
seizure detection problem. Dictionary is consists 
of EEG training samples for different classes. The 
sparse coefficient for a test sample is obtained 
by the L1-norm minimization.

Set D vs E
23.59sec

SAC
(Basis
Pursuit)

SAC
(FISTA)

SAC
(Homotopy)

L2
(Pseudo inv.)

Sensitivity (%) 97 99 99 97
Specificity (%) 100 100 100 100
Accuracy (%) 98.5 99.5 99.5 98.5
Time (sec) 6.6932 0.0523 0.1211 0.0105
Residual 0.0264 0.0353 0.0286 0.0264

Table 1. Classification performance of conventional basis pursuit based SAC method, fast L1 (FISTA and 
Homotopy) based SAC methods and conventional L2 norm method (Pseudo inverse) for two class 
classification problem using dataset D and E.
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vector can be recovered by the L1-norm 

minimization algorithm. 

3. Results and Discussion

3.1. Experimental evaluation

For evaluation of the proposed methods in 

this paper, we compare classification 

performance of L1-norm based SAC methods 

and L2-norm based pseudo-inverse method. For 

reliable evaluation using the limited size of 

dataset, we use the 10-fold cross-validation.

We use statistical parameters such as 

sensitivity, specificity and classification 

accuracy for evaluation of classification 

performance. The definition of each parameter 

is as follows:

Sensitivity: number of correctly classified 

seizure segments/ total number of actual seizure 

segments. 

Specificity: number of correctly classified 

normal (or non-seizure) segments/ total number 

of actual normal (or non-seizure) segments.

Classification accuracy: number of correctly 

classified segments/ total number of segments.

Furthermore, we compare running time of 

the L1-norm based SAC methods and the 

conventional L2-norm based method. Our 

evaluation for running time focuses on the L1 

and L2 optimization steps. 

3.2. Experimental results

For evaluation of the proposed methods, we 

compare classification performance of L1-norm 

based SAC methods and L2-norm based 

pseudo-inverse method using iEEG dataset. 

Furthermore, we examine classification 

performance for the different number of time 

samples (time duration) per one segment. 

Table 1 lists of the classification results for 

Set D (interictal, opposite to epileptogenic zone) 

and Set E (ictal, within epileptogenic zone) that 

can be useful for pre-surgical evaluation of 

epilepsy and therefore.

We compare classification performance of 

the fast L1 (FISTA and Homotopy) based SAC 

methods with the conventional basis pursuit 

(BP) based SAC and L2-norm based pseudo 

inverse method. From the results of Table 1, 

FISTA and Homotopy based SAC methods show 

better sensitivity and accuracy than the 

L2-norm based method. Between FISTA and 

Homotopy based SAC methods, there is small 

running time difference with same classification 

accuracy. The BP based SAC method shows 

same classification results to the L2-norm based 

pseudo inverse method. However, running time 

of the initial BP based SRC is too slow. It takes 

6.69 sec per segment which is averaged by all 

segments and it is not practically available. On 

the other hand, fast L1 based SAC methods 

show improved running time, i.e., 0.05 sec for 

FISTA and 0.1211 sec for Homotopy, with better 

accuracy and these are practically available for 

real time seizure detection application. 

For the residual values which are represented 

in last low of Table 1, we compute the residual 

a s   similarly in (2), where x̂  is 

recovered coefficient by each L1- or L2-norm 

based method. Even though the classification 

accuracy of the fast L1-norm based SAC 

methods are better, L2-norm based method 

show smaller minimal residual. 

In Table 2, we compare classification results 

for other classification problems using the 

proposed Homotopy based SAC method. For all 

datasets, the same 4096 samples per segment 

are used. First, in order to evaluate the 

2
ˆ( ) :r = -y y Ax



526   한국정보전자통신기술학회논문지 제12권 제5호

performance of the proposed method in normal 

EEG datasets from healthy patients, we consider 

the classification problem with seizure activity 

(set E) and normal EEG (set A and B), i.e., set A 

and B obtained from normal EEG segment 

during eyes opened and closed. 

As we can see in Table 2, for the case of set 

A vs E, the proposed Homotopy based SAC 

method can achieve 100% classification 

accuracy. On the other hand, we obtain 97.5% 

accuracy in the case of set B vs E. Second, we 

aim to classify interictal (set C) and ictal (set E) 

dataset within the same epileptogenic zone. 

This evaluation might be useful for providing an 

alarm of seizure activity of epileptic patients. In 

this case, similar to the results of Table 1 (set D 

vs E), the proposed method can achieve 99% 

classification accuracy.

Furthermore, in Table 3, we evaluate the 

multi-class classification performance using the 

proposed Homotopy based SAC method. In this 

classification, we use the dataset A, D and E, 

i.e., normal, interictal and ictal. Table 3 shows 

a confusion matrix which lists the detailed 

classification results. In this three-class 

classification, the proposed method shows 

97.7% classification accuracy. The most difficult 

classification task is to make distinction 

between the normal (set A) and the interictal 

(set D) signal. The 5 normal segments are 

classified as interictal in Table 3. It might be 

because the EEG pattern in seizure free intervals 

(set D) is more similar to the normal EEG 

pattern (set A) in terms of signal amplitude and 

shape compared with seizure intervals (set E) as 

shown in Figure 1.

Dataset Sensitivit
y (%)

Specificit
y (%)

Accurac
y (%)

A vs E 100 100 100
B vs E 100 95 97.5
C vs E 98 100 99

Table 2. Classification performance of a Homotopy based 
SAC method for different classification problems.

Homotopy Set A
(predicted)

Set D
(predicted)

Set E
(predicted)

Set A
(actual) 95 5 0

Set D
(actual) 1 99 0

Set E
(actual) 0 1 99

Table 3. Confusion matrix of a Homotopy based SRC 
method using data set A, D and E. 

Furthermore, in Table 3, we evaluate the 

multi-class classification performance using the 

proposed Homotopy based SAC method. In this 

classification, we use the dataset A, D and E, 

i.e., normal, interictal and ictal. Table 3 shows 

a confusion matrix which lists the detailed 

classification results. In this three-class 

classification, the proposed method shows 

97.7% classification accuracy. The most difficult 

classification task is to make distinction 

between the normal (set A) and the interictal 

(set D) signal. The 5 normal segments are 

classified as interictal in Table 3. It might be 

because the EEG pattern in seizure free intervals 

(set D) is more similar to the normal EEG 

pattern (set A) in terms of signal amplitude and 

shape compared with seizure intervals (set E) as 

shown in Figure 1.

4. Conclusion

In this study, we propose a simple sparse 

approximation based classification (SAC) 

scheme for automatic seizure detection tasks. 
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The proposed scheme utilizes EEG time samples 

obtained from different states, i.e., normal, 

seizure and seizure free. A dictionary is formed 

using the training EEG samples and a sparse 

approximation of the test EEG sample is 

obtained by solving the efficient L1-norm 

minimization algorithms, i.e., Homotopy and 

FISTA. Finally, the recovered sparse coefficients 

are used for classification task using the 

minimal residual rule. Public dataset obtained 

from normal healthy subjects and epileptic 

patients are used for evaluation of the proposed 

method. The proposed fast L1-norm based SAC 

methods show improved classification accuracy 

than conventional L1- and L2-norm based 

methods.
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