• Title/Summary/Keyword: nonsingular rings

Search Result 5, Processing Time 0.02 seconds

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

Rings Whose Simple Singular Modules are PS-Injective

  • Xiang, Yueming;Ouyang, Lunqun
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.471-476
    • /
    • 2014
  • Let R be a ring. A right R-module M is PS-injective if every R-homomorphism $f:aR{\rightarrow}M$ for every principally small right ideal aR can be extended to $R{\rightarrow}M$. We investigate, in this paper, rings whose simple singular modules are PS-injective. New characterizations of semiprimitive rings and semisimple Artinian rings are given.

ON COFINITELY CLOSED WEAK δ-SUPPLEMENTED MODULES

  • Sozen, Esra Ozturk
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2020
  • A module M is called cofinitely closed weak δ-supplemented (briefly δ-ccws-module) if for any cofinite closed submodule N of M has a weak δ-supplement in M. In this paper we investigate the basic properties of δ-ccws modules. In the light of this study, we can list the main facts obtained as following: (1) Any cofinite closed direct summand of a δ-ccws module is also a δ-ccws module; (2) Let R be a left δ-V -ring. Then R is a δ-ccws module iff R is a ccws-module iff R is extending; (3) Any nonsingular homomorphic image of a δ-ccws-module is also a δ-ccws-module; (4) We characterize nonsingular δ-V -rings in which all nonsingular modules are δ-ccws.

ON INJECTIVITY AND P-INJECTIVITY

  • Xiao Guangshi;Tong Wenting
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.299-307
    • /
    • 2006
  • The following results ale extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $_R(M/Z(M))$ is projective, where Z(M) is the left singular submodule of $_{R}M$; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is Y J-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.

Baer and Quasi-Baer Modules over Some Classes of Rings

  • Haily, Abdelfattah;Rahnaou, Hamid
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.4
    • /
    • pp.375-384
    • /
    • 2011
  • We study Baer and quasi-Baer modules over some classes of rings. We also introduce a new class of modules called AI-modules, in which the kernel of every nonzero endomorphism is contained in a proper direct summand. The main results obtained here are: (1) A module is Baer iff it is an AI-module and has SSIP. (2) For a perfect ring R, the direct sum of Baer modules is Baer iff R is primary decomposable. (3) Every injective R-module is quasi-Baer iff R is a QI-ring.