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Abstract. We study Baer and quasi-Baer modules over some classes of rings. We also
introduce a new class of modules called AI-modules, in which the kernel of every nonzero
endomorphism is contained in a proper direct summand.

The main results obtained here are: (1) A module is Baer iff it is an AI-module and

has SSIP . (2) For a perfect ring R, the direct sum of Baer modules is Baer iff R is primary

decomposable. (3) Every injective R-module is quasi-Baer iff R is a QI-ring.

1. Introduction

Baer and quasi-Baer modules were introduced by Rizvi and Roman in [9], ex-
tending to modules, the same notions known for rings (see also[10] and [11]). These
notions turn to be very useful and yield many interesting structure theorems.

In the present work, we study some questions relative to Baer and quasi-Baer
modules. The work falls in the following theme: Given a class C of R-modules
(injective, semisimple,...), find necessary and sufficient conditions on the ring R
such that every Baer or quasi-Baer module is in C, or conversely every module in C

is Baer or quasi-Baer.

The material is divided into four sections. In section 2, we introduce a class
of modules that we call AI-modules, in which every nonzero annihilator contains
a nonzero idempotent. This class lies strictly between the class of K-nonsingular
modules and the class of Baer modules. Our scope, is to study the Baer modules
via the AI property. In section 3, we give a characterization of Baer modules using
the AI property and the SSIP , we show also that an AI-module with some chain
condition on direct summands is Baer. In section 4, we study rings over which the
direct sum of Baer modules is Baer. This provides us a characterization of perfect
rings that are primary decomposable. In the last section, we characterize rings all
of whose injective modules are quasi-Baer, it turn out that these are exactly the
QI- rings.
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Throughout this work R denotes an arbitrary ring, the Jacobson radical of R
is denoted J(R). All modules considered are left R-modules. We denote EndR(M)
the endomorphism ring of an R-moduleM . A submodule N ofM is said to be fully
invariant, if u(N) ⊂ N , for every u ∈ EndR(M).

2. Definitions and basic properties

Definition 2.1([9]). An R-module M is said to be Baer (resp. quasi-Baer),
if for every submodule (resp. fully invariant submodule) N of M , the left ideal
{u ∈ EndR(M) : u(N) = 0} of EndR(M) is generated by an idempotent.

These are generalizations of the notion of Baer and quasi-Baer rings respectively.
As noted in [9], a ring R is Baer (resp. quasi-Baer), if and only if, it is Baer (resp.
quasi-Baer) as a left module, or right module over itself.

Note that Baer rings were introduced by Kaplansky [8], and quasi-Baer ring by
Clark [4].

Definition 2.2.Let R be a ring. An R-module M is said to have the AI property,
or thatM is an AI-module, if for every nonzero endomorphism u ofM , there exists
a nonzero idempotent p in EndR(M) such that p (Ker(u)) = 0.

As in [7], the term AI means that every Anihilator contains an Idempotent,
since for N = Ker(u), AnnS(N) = {v ∈ S : v(N) = 0}, where S = EndR(M),
contains a nonzero idempotent.

Example 2.3. Every semisimple module and more generally, every module with
von Neumann regular ring is AI.

Theorem 2.4. Let M be an R-module and et S = EndR(M). The following
assertions are equivalent:

(i) M is an AI-module.

(ii) For every left ideal I of S, if rM (I) = {m ∈ M : Im = 0} is nonzero, then
there exists an idempotent p ∈ S, such that p ̸= 1 and rM (I) ⊂ p(M).

Proof. (i)⇒(ii). Suppose thatM is an AI-module, let I a left ideal of S = EndR(M)
such that rM (I) = N is nonzero. Then there exists a nonzero idempotent p of S
such that p(N) = 0. This implies that N ⊂ (1− p)(M).

Conversely, suppose that (ii) holds, if u is noninjective, put N = Ker(u) and
I = AnnS(N). We have IN = 0, thus N ⊂ rM (I) ⊂ p(M), where p ̸= 1. This
implies (1− p)(N) = 0. 2

Remark 2.5. Every Baer-module is AI, but the converse does not hold in general,
as the following example shows, see Lam [12], Example 7.54.

Example 2.6. Let K be a field and R the ring of sequences (a1, a2, . . . , an, . . .), of
elements of K, which are stationnary. Then R is von Neumann regular, hence AI
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as left R-module, but R is not Baer.

Example 2.7. Every module for which every nonzero endomorphism is monic, is
AI.

Definition 2.8([9]). An R-module is said to be K-nonsingular, if for every nonzero
endomorphism u of M , Ker(u) is not essential in M .

Proposition 2.9. Every AI-module is K-nonsingular.

Proof. Let M be an AI module and u ∈ EndR(M) be nonzero. Then there exists
nonzero idempotent p in EndR(M), such that p (Ker(u)) = 0. That is, Ker(u), is
contained in a direct summand. Thus Ker(u) is not essential in M . 2

Example 2.10. The converse of the preceding proposition is not true as we see
by the following example. Let K be any field, consider the commutative K-algebra
R generated by two elements a, b, such that ab = 0. Since R is noetherian and
reduced, then it is nonsingular. If we take u : R → R, defined by u(x) = xa, then
Ker(u) = (b), the ideal generated by b, and there exists no nonzero idempotent p
such that p(Ker(u)) = 0.

As for Baer modules, the AI property is inherited by direct summands:

Proposition 2.11. If M is an AI-module, then every summand of M is an AI-
module.

Proof. Let M = N ⊕ L be an AI-module, and 0 ̸= u ∈ EndR(N). Let v = ( u 0
0 0 ) ∈

EndR(M). Then Ker(v) = Ker(u) ⊕ L. Since M is AI, there exists a nonzero
idempotent p =

(
a b
c d

)
in EndR(M) such that p(Ker(v)) = 0. This implies that

b(L) = d(L) = 0, hence b = d = 0. Now p = ( a 0
c 0 ), and p2 = ( a 0

c 0 )
2
=

(
a2 0
ca 0

)
=

( a 0
c 0 ), thus a

2 = a ̸= 0, and a(Ker(u)) = 0. Consequently, N is AI. 2

Example 2.12. In contrast with Proposition 2.11., the direct sum of AI-modules
need not to be AI. As an example, take the Z-modules Z and Z/pZ, where p is
a prime integer. These are AI-modules. Let M = Z ⊕ Z/pZ, then M is not AI.
For if we consider the endomorphism u : M → M defined by u(x, y) = (0, x̄), then
Ker(u) = pZ⊕Z/pZ is essential in M . So, M is not K-nonsingular, hence not AI.

3. AI-modules and Baer modules

In this section, we shall investigate some cases in which the AI-modules are
Baer modules. First we recall a notion that was introduced by G. V. Wilson in [13].

Defiition 3.1. A module M is said to have the summand intersection property
(SIP ), if the intersection of any two direct summands of M is a direct summand.
A module M is said to have the strong summand intersection property (SSIP ), if
the intersection of any family of direct summands of M is a direct summand.
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Clearly every semisimple module has SSIP . On the other hand, it was shown
in [9] that every Baer module has SSIP .

The link between AI-modules and Baer modules is the SSIP property, as shown
by the next theorem:

Theorem 3.2. Let M be an R-module then M is Baer, if and only if, M is AI
and has SSIP.

Proof. It remains only to show the sufficiency. Suppose that M is an AI-module
with the SSIP property. We shall show that M is Baer. Let N be a submodule
of M , S = EndR(M), and AnnS(N) = {u ∈ S : u(N) = 0}. We must show that
AnnS(N) = Sp, where p is an idempotent in EndR(M).

If AnnS(N) = 0, then we are done. Suppose that AnnS(N) ̸= 0. Let F = {q ∈
EndR(M) : q2 = q, and q(N) = 0}. Since M is AI, then F ̸= ∅. Now M has SSIP,
thus ∩q∈FKer(q) = Ker(p), for some idempotent p in S. We are going to show that
AnnS(N) = Sp.

We have Sp ⊂ AnnS(N). Now, let us show that AnnS(N)∩S(1−p) = {0}. Sup-
pose on the contrary that AnnS(N)∩S(1− p) ̸= {0}. Since AnnS(N)∩S(I − p) ⊂
AnnS(N + p(M)), then AnnS(N + p(M)) ̸= 0. The fact that M is AI, implies
that there exists a nonzero idempotent f of S such that f(N + p(M)) = 0.
Now f(N) = 0, thus f ∈ F, so Ker(p) ⊂ Ker(f), i.e. f · (I − p) = 0, im-
plying fp = f . But f(p(M)) = 0, hence f = 0 a contradiction. This means
that AnnS(N) ∩ S(1 − p) = {0}. Now let u ∈ AnnS(N), since p ∈ AnnS(N),
u− up ∈ AnnS(N). Thus u · (1− p) ∈ AnnS(N). But, u · (1− p) ∈ S(1− p), hence
u · (1− p) = 0. i.e. u = up ∈ Sp. 2

Remark 3.3. In [9], Proposition 2.2, the authors showed that if: (1) M has SSIP
and (2) Ker(u) is a direct summand, for every u ∈ EndR(M), then M is Baer mod-
ule. The condition of being AI in our theorem is weaker than the condition (2).

Theorem 3.4. Let M be an R-module such that EndR(M) has no infinite orthog-
onal set of nonzero idempotents. Then M is Baer if and only if M is AI.

Proof. (See also the proof of Theorem 7.55 in [12]). As in Theorem 3.2., let N be
a submodule of M , such that and I = AnnS(N) is nonzero. By [12], Proposition
6.59, S satisfies ACC on left direct summands. Take Sp maximal where p is taken
among idempotents in I. We shall show that I = Sp. Again it suffices to show
that I ∩S(1−p) = {0}. Otherwise, Ann(N +p(M)) contains a nonzero idempotent
f . We have fp = 0. Let p′ = p + (1 − p)f . Then p′ is an idempotent in I. But
p′p = p = pp′. It follows that Sp ⊂ Sp′. The maximality of Sp implies Sp = Sp′.
Hence p′ = hp, for some h ∈ S. Now p′(1 − p) = hp(1 − p) = 0, so p′p = p′. Thus
p′ = p, i.e. (1 − p)f = f − pf = 0. Composing by f on the left, yields f = 0 a
contradiction. 2

Corollary 3.5. Every noetherian or artinian AI-module is Baer. In particular, it
has SSIP.
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In general, artinian or noetherian modules need not have SSIP , as shown in
[1], example 1. The authors gave there an example of finite dimensional algebra
which does not have SIP as a left module over itself.

4. Direct sum of Baer modules

As shown in Example 2.12., direct sum of AI-modules need not be AI. This fact
lead to the problem to know when this is true. In this section, we shall investigate
this question. Namely, we shall study rings over which the direct sum of AI (resp.
Baer) modules is AI (resp. Baer). This leads to the characterizations of some
classes of rings.

Proposition 4.1. Let M be an R-module, N a proper essential submodule and
S =M/N . Then M ⊕ S is not K-nonsingular.

Proof. Let u :M ⊕ S →M ⊕ S, defined by u(x, y) = (0, π(x)), where π :M → S is
the canonical surjection. Then Ker(u) = N ⊕ S, is essential in M ⊕ S. 2

Proposition 4.2. Let M be an R-module, such that every proper submodule of
M is contained in a maximal submodule. If M ⊕M/N is K-nonsingular for every
maximal submodule N , then M is semisimple.

Proof. Suppose that M is not semisimple, then M contains a proper essential
submodule which is contained in a maximal (essential) submodule N . Now, by
Proposition 4.1., M ⊕M/N is not K-nonsingular. 2.

Definition 4.3. Recall from [2], [5], that a ring R is said to be semilocal, if R/J(R)
is semisimple (artinian), where J(R) is the Jacobson radical of R.

R is left (resp. right) perfect, if it is semilocal and every nonzero module has a
maximal (resp. simple) submodule.

R is said to be perfect if it is left and right perfect. For example every left or
right artinian ring is perfect.

A perfect ring R is called primary, if R/J(R) is simple artinian. It is well known
that a perfect ring is primary, if and only if, R ∼= Mn(L), where L is a perfect local
ring.

Finally, a perfect ring is called primary decomposable, if R ∼=
∏s

i=1Ri, where
each Ri is primary.

The following theorem, gives a characterization of primary decomposable rings,
using the direct sum of Baer or AI modules.

Theorem 4.4. Let R be a perfect ring. Then the following assertions are equivalent:

(i) every K-nonsingular module is semi-simple.

(ii) every AI module is semisimple.

(iii) every Baer module is semisimple.

(iv) the direct sum of Baer modules is Baer.
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(v) R is primary decomposable.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are clear.
(iv) ⇒ (v). Suppose that (iv) holds, letM be an R-module such that EndR(M)

is a division ring, then M is Baer. Since R is perfect, every proper submodule of
M is contained in a maximal one. Now for every maximal submodule L, M/L is
simple, thus Baer. By hypothesis, M ⊕M/N is Baer, hence by Proposition 4.2., M
is semisimple and then simple. It follows that R satisfies the converse of the Schur’s
Lemma. Then by [6], Theorem 1.2, R is primary decomposable.

(v) ⇒ (i). Suppose that R is primary decomposable. Let M be K-nonsingular.
If M is non semisimple, then M contains a proper essential submodule N . Since
R is primary decomposable perfect ring, there exists a nonzero endomorphism u of
M such that u(N) = 0 (see[6]). This means that Ker(u) is essential. But M is
K-nonsingular. A contradiction. 2

Now we study the case when the base ring is left noetherian ring.

Theorem 4.5. Let R be a left noetherian ring. Then the following assertions are
equivalent:

(i) every K-nonsingular module is semi-simple.

(ii) every AI module is semisimple.

(iii) every Baer module is semisimple.

(iv) the direct sum of Baer modules is Baer.

(v) R is artinian primary decomposable.

Proof. It remains only to show that (iv) ⇒ (v). Suppose first that R is semiprime
left noetherian. Let Q the left total ring of fractions. Q is a semisimple ring. If
e is any minimal idempotent of Q, then Re is an R-submodule of Q. Next we
show that Re is Baer as R-module by showing that every endomorphism of Re is
a monic. Let u ∈ EndR(Re) and λe ∈ Ker(u). Take v : Qe → Qe defined by
v(xe) = xu(e). Then v is well defined and v ∈ EndQ(Qe) which is a division ring.
We have v(λe) = λu(e) = u(λe) = 0. Since v is an isomorphism, it follows that
λe = 0. Thus every u ∈ EndR(Re) is injective. Hence Re is a Baer module. On
the other hand, Re is noetherian, consequentely it contains a maximal submodule
N . By hypothesis, Re ⊕ Re/N is Baer. This implies that Re is semisimple. Now
R = Re1 ⊕ . . . ⊕ Ren, where e1, . . . , en is a complete family of pairwise minimal
orthogonal idempotents of Q. Since each Rei is semisimple, it follows that R is
semisimple.

Now let R be an arbitrary noetherian ring satisfying (iv). If P is a prime ideal of
R, then clearly R/P satisfies the property (iv). Hence R/P is semisimple artinian.
It follows that the Jacobson radical of R, J(R), is contained in P . This implies
that J(R) is nil. But R is left noetherian, thus J(R) is nilpotent. To conclude, R
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is noetherian, J(R) nilpotent and R/J(R) semisimple, then R is artinian, and is
primary decomposable by Theorem 4.4. 2

In the case of commutative rings, we have a complete description, without any
extra assumption on the ring R:

Theorem 4.6. Let R be a commutative ring. Then the following are equivalent:

(i) Any direct sum of two Baer modules is Baer.

(ii) Every K-nonsingular module is semisimple.

(iii) R is semilocal and J(R) is a nilideal.

Proof. (ii)⇒(i) is clear.
(i)⇒(iii). Suppose first that R is an integral domain. Let I be a maximal

ideal. Then R ⊕ R/I is Baer. It follows that R is semisimple, hence R is a field.
Now if R is arbitrary, then for every prime ideal P of R, R/P satisfies (i). Thus
every prime ideal of R is maximal. This implies that J(R) is nil and T = R/J(R)
is von Neumann regular. It remains to show that every VNR commutative ring T
satisfying (i) is semisimple. Let T̂ the injective envelope of T . Since T̂ is nonsingular
injective as T -module, it is a Baer T -module. On the other hand, by Kaplansky
theorem (see [5]), and since T is a commutative von Neumann regular ring, then
T is a V-ring (see Definition 5.1. below). Consequently, every T -module has a
maximal submodule. Now if I is any maximal T -submodule of T̂ , then T̂ ⊕ T̂ /I,
is Baer. So by Proposition 4.2., T̂ is semisimple as T -module, consequently, T is
semisimple.

(iii)⇒(ii). Let M be K-nonsingular. We shall show that J(R)M = 0. Let a ∈
J(R). Consider λa :M →M , λa(x) = ax. Since R is commutative, λa ∈ EndR(M).
Suppose that λa ̸= 0. If N is any nonzero submodule, take k the maximal integer
such that akN ̸= 0. Then ak+1N = 0. This means that Ker(λa) ∩N ̸= 0. Ker(λa)
is essential in M . A contradiction, since M is K-nonsingular. Thus λa = 0. This
implies J(R)M = 0. M is semisimple. 2

5. When are injective modules quasi-Baer?

It has been shown in [10] Theorem 2.20, that if all injective R-modules are
Baer, then R is semisimple artinian. This suggests the study of the same question
replacing Baer by quasi-Baer. This will be the main objective of this section. We
shall use extensively the following fact: Given any two R-modules M and N , then
any u ∈ EndR(M ⊕N) can be considered under the form

u =

(
a b
c d

)
∈
(

EndR(M) HomR(N,M)
HomR(M,N) EndR(N)

)
Now, we recall some well known definitions.

Definition 5.1([5]). A ring R is called a QI-ring, see [5], if every quasi-injective
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R-module is injective. Example of such ring was given by Cozzens. Any QI-ing is
a V-ring, that is every simple R-module is injective, and is noetherian. It is not
known if a QI-ring is hereditary (Boyle’s conjecture).

Theorem 5.1. Let R be a ring. The following assertions are equivalent:

(i) R is a QI-ring.

(ii) Every injective module is quasi-Baer.

(iii) For every injective R-moduleM and every fully invariant essential submodule
N of M , AnnS(N) = 0, where S = EndR(M).

Proof. (i)⇒(ii). Let R be a QI-ring, M an injective R-module and N a fully
invariant submodule of M . Put S = EndR(M) and I = AnnS(N). N is quasi-
injective, hence injective since R is a QI-ring. It follows that N is a direct summand
of M . Consequently, I is generated, as left ideal, by an idempotent.

(ii)⇒(iii) is clear.
(iii)⇒(i). First we show that R is a V-ring. Let H be a simple R-module, and

E(H) its injective envelope. Suppose that H is not injective, then H ̸= E(H). Let
x ∈ E(H) not in H and consider N a maximal submodule of M with respect to
x /∈ N . Then E(H)/N is a uniform module with socle H ′ = N +Rx/N .

If H ′ ∼= H, then there exists a nonzero morphism f : H ′ → E(H). This would
imply the existence of a nonzero morphism g : N+Rx→ E(H), such that g(N) = 0,
and since E(H) is injective, there exists a nonzero endomorphism u of E(H), which
extends g, and such that v(N) = 0. Hence v(H) = 0. A contradiction.

If H ′ ̸∼= H, then every morphism of E(H) → E(H ′) is noninjective, otherwise
E(H) would be a nonzero direct summand of E(H ′). Analogously every morphism
E(H ′) → E(H) is non injective. Let M = E(H) ⊕ E(H ′) and L = H ⊕ H ′.

Consider ϕ =
(

α β
γ δ

)
∈ EndR(M). By the fact that α(H) ⊂ H and δ(H ′) ⊂ H ′,

β(H ′) = 0 and γ(H) = 0 (β and γ are not injective), we have ϕ(L) ⊂ L. This
means that L is a fully invariant submodule ofM . On the other hand, Let f = ı◦π,
where π : E(H) → E(H)/N is the canonical surjection,and ı : E(H)/N → E(H ′)
the canonical injection. If we put ψ =

(
0 0
f 0

)
∈ EndR(M), then ψ(L) = 0. A

contradiction since L is essential in M .
In both cases, we obtain a contradiction. This implies that every simple module

is injective so that R is a V-ring.

Now we show that R is Q.I. Let M be a quasi-injective R-module and P its
injective hull. Suppose thatM is not injective. Then P ̸=M and since R is a V-ring,
there exists a maximal submodule T of P containing M . The factor module H =
P/T is simple and injective (again by the fact that R is a V-ring). If HomR(H,P ) ̸=
0, then there exists a nonzero endomorphism u of P such that u(T ) = 0, hence
u(M) = 0 this leads to a contradiction, since M is fully invariant and essential in
P . Thus HomR(H,M) = 0. Now let L = M ⊕H, since HomR(H,M) = 0 and M
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is quasi-injective, then L is a fully invariant essential submodule of P ⊕ H. If we
put ψ = ( 0 0

π 0 ) ∈ EndR(P ⊕H), where π : P → H is the canonical surjection, then
ψ(L) = 0, a contradiction. 2

Remark 5.2. As noted in [9], Theorem 4.1, if M is quasi-Baer, then EndR(M)
is a quasi-Baer ring. The converse does not hold in general. If R is QI-ring, then
for every injective R-module M , EndR(M) is a quasi-Baer ring. It is an interesting
question to characterize rings over which every injective module has a quasi-Baer
endomorphism ring.

In this direction, we note the following result concerning injective modules over
hereditary noetherian rings:

Proposition 5.3. Let M be an injective module over hereditary noetherian ring R.
Then the ring EndR(M) is quasi-Baer.

Proof. Let I be a two-sided ideal of S = EndR(M). Suppose that AnnlI = {u ∈
S : uI = 0} is nonzero. Then uI = 0, for some nonzero u ∈ S. Consequently
I(M) ̸=M . But I(M) =

∑
h∈I h(M). Since M is injective and h(M) is isomorphic

to a factor of M , then h(M) is injective. Now over a hereditary noetherian ring
the sum of injective submodules of an injective module is injective. This implies
that I(M) is injective. Consequently, I(M) is a summand ofM and AnnS(I(M)) is
generated as left ideal by an idempotent p. Since AnnS(I(M)) = AnnlI, it follows
that AnnlI is generated by an idempotent. 2

Corollary 5.4. Let M be a divisible abelian group (a Z-module), then the ring
EndZ(M) is quasi-Baer.

Proof. This is clear since Z is hereditary noetherian and any divisible groupe is
injective as Z-module. 2
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