• 제목/요약/키워드: nonpathogenic

Search Result 60, Processing Time 0.026 seconds

Study on The Herbs and Forms of Oriental Applications to Treat Mycoses (진균증을 치료하는 한방외용약의 제형과 약물 분류)

  • Kim, Yong-Chan;Kang, Jung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1126-1134
    • /
    • 2006
  • Human fungal infections are uncommon in normally healthy persons, being confined to conditions such as candidiasis (thrush) and dermatophyte skin infections such as athlete's foot. However, in the immunocompromised host, a variety of normally mild or nonpathogenic fungi can cause potentially fatal infections. Furthermore, the relativeease with which people can now visit 'exotic' countries provides the means for unusual fungal infections to be imported into this country. Mycoses appear in many different forms and areas. Fungal infections or mycoses are classified depending on the degree of tissue involvement and mode of entry into the host. These are Cutaneous, Subcutaneous, Systemic, and Opportunistic. Cutaneous mycoses specially appears symptoms on the skin. They are treated by amphotericinB, nystatin, grycelfulvin, micronazole and ketaconazole, etc, but these medicines are been careful about using, because most of them have serious side effects and toxicities. So, on the purpose of finding safe novel medicines, we have researched oriental medicines and search them to treat mycoses. In oriental medicines treating mycoses, we pay attention to orient applications that directly have an effect on disorder lesions. Oriental applications consists of various herbs and have a lot of forms, so we try to classify them as herbs and forms

Food-Grade Expression and Secretion Systems in Lactococcus

  • Jeong, Do-Won;Hwang, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.485-493
    • /
    • 2006
  • Lactococcus species are noninvasive and nonpathogenic microorganisms that are widely used in industrial food fermentation and as well-known probiotics. They have been modified by traditional methods and genetic engineering to produce useful food-grade materials. The application of genetically modified lactococci in the food industry requires their genetic elements to be safe and stable from integration with endogenous food microorganisms. In addition, selection for antibiotic-resistance genes should be avoided. Several expression and secretion signals have been developed for the production and secretion of useful proteins in lactococci. Food-grade systems composed of genetic elements from lactic acid bacteria have been developed. Recent developments in this area have focused on food-grade selection markers, stabilization, and integration strategies, as well as approaches for controlled gene expression and secretion of foreign proteins. This paper reviews the expression and secretion signals available in lactococci and the development of food-grade markers, food-grade cloning vectors, and integrative food-grade systems.

Effect of Feeding Direct-fed Microbial as an Alternative to Antibiotics for the Prophylaxis of Calf Diarrhea in Holstein Calves

  • Kim, Min-Kook;Lee, Hong-Gu;Park, Jeong-Ah;Kang, Sang-Kee;Choi, Yun-Jaie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.643-649
    • /
    • 2011
  • The objective of this study was to determine the effect of feeding direct-fed microbials (DFM) on the growth performance and prophylaxis of calf diarrhea during the pre-weaning period as an alternative to antibiotics. A multi-species DFM was formulated including three lactic acid bacteria (Lactobacillus salivarius Ls29, Pediococcus acidilactia Pa175, and L. plantarum Lp177), three Bacillus strains (B. subtilis T4, B. polymyxa T1 and SM2), one yeast, Saccharomyces boulardii, and a nonpathogenic E. coli Nissle 1917. Lactic acid bacteria and Bacillus strains were selected based on the antibacterial activity against various animal pathogens, especially pathogenic E. coli using agar diffusion methods in vitro. Test and control groups were fed milk replacer and calf starter supplemented with DFM ($10^9$ cfu each of eight species/d/head, n = 29) or with antibiotics (0.1% neomycin sulfate in milk replacer and Colistin 0.08% and Oxyneo 110/110 0.1% in calf starter, n = 15), respectively. Overall fecal score and the incidence rate of diarrhea were reduced in the DFM group compared to the antibiotics one. About 40% of calves in antibiotic group suffered from diarrhea while in DFM group only 14% showed diarrhea. There was no difference in the average daily gain and feed efficiency of two groups. The hematological levels of calves were all within the normal range with no significant difference. In conclusion, the feeding of multispecies DFM during the pre-weaning period could reduce calf diarrhea and there was no difference in the growth performance between the groups, thus showing the potential as an alternative to antibiotics.

Evaluation of Pear Cultivar Susceptibility to AK-toxin Produced by Alternaria kikuchiana (배 검은무늬병균 (Alternaria kikuchiana)이 생성(生成)하는 AK독소(毒素)에 대한 배품종(品種)의 감수성(感受性) 진단(診斷))

  • Park, Jong Seong;Yu, Seung Hun
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • Out of 24 isolates of Alternaria collected from pear leaves, only 7 isolates from cv. Nijiseiki leaves were specifically pathogenic to susceptible pear cultivar(Nijiseiki). Other isolates from cv. Chojuro, Oksankichi and Sinko did not show any pathogenicity to pear leaves. Pathogenic isolates of Alternaria kikuchiana produced host-specific toxin (AK-toxin) in liquid culture which caused veinal necrosis only on susceptible pear leaves, while nonpathogenic isolates did not produce this toxin. Varietal susceptibility among pear cultivars to the pathogen was investigated by evaluating HST (AK-toxin) sensitivity of pear leaves, as a substitute for spore inoculation. AK-toxin which the fungus produces was toxic to pear cultivars susceptible to the pathogen such as Isipsegi and Sinsu, but was harmless to resistant pear cultivars such as Chojuro, Oksankichi, Niitaka etc. Changes in disease susceptibility and toxin sensitivity of pear leaves with aging was investigated. Disease susceptibility and toxin sensitivity in cv. Sinsu leaves appeared to vary with leaf aging; the young leaves were visibly susceptible, but older leaves (more than 2 week old leaves) became resistant.

  • PDF

Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis

  • Roeske, Katarzyna;Stachowiak, Radoslaw;Jagielski, Tomasz;Kaminski, Michal;Bielecki, Jacek
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.122-135
    • /
    • 2018
  • Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous antigens to the host cell cytosol and lead to their processing predominantly through the cytosolic MHC class I presentation pathway. The aim of this project was to characterize the delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of $CD8^+$ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a vaccine vector.

Investigations of bacterial contamination level and prevalence of major viral disease for fresh-extended porcine semen (인공수정용 돼지 액상정액 세균오염도 조사 및 정액유래 주요 바이러스성 질병 감염률 조사)

  • Son, Byeong-Guk;Park, Ho-Jung;Kim, Eun-Gyeong;Lee, Jong-Min;Hwang, Bo-Won;Heo, Jung-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.4
    • /
    • pp.319-326
    • /
    • 2010
  • Bacteroiospermia is a frequently finding in fresh raw and extended porcine semen and can results in detrimental effects on semen quality and longevity. This study aims to evaluate the type of bacterial contaminants in raw and extended porcine semen and the reducing effect of antibiotic test. To investigate bacterial contaminants, out of 387 sample (raw semen 201, extended semen 186) were collected from 6 artifical insemination centers in Gyeongsangnam-do, were inoculated onto blood agar and MacKonkey agar, respectively. Bacterial colonies were selected after culturing for 48 hours, at $37^{\circ}C$, followed by Gram staining, KOH test, oxidase test, catalase test and eventually identified using VITEK System. Total 15 genus and 24 species of bacteria were isolated from these semen samlpes. In raw semen, the most prevalent contaminants were Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Staphylococcus auricularis, Delftia acidovorans, Acinetobacter lowffii, S. aureus and others. And in extended porcine semen, A. lowffii, S. aureus, S. auricularis and other bacteria were identified. Most of them was G(-), which is nonpathogenic bacteria. It seems that bacterial contaminants in fresh raw and extended porcine semen originated from multiple sources at the farms/stud, and were from animal origin and non-animal origins. Whereas, the 7 virus which is known to be detected in porcine semen in 75 cases was not detected. This results showed that removal of bacterial contamination in raw and extended porcine semen is essential and farms were kept for biosecurity and individual hygienes.

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae

  • Kwon, Min-Jung;Kim, Kyoung-Su;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.

Transformation of an Alkalin Protease Overproducer, Vibrio metschnikovii Strain RH530, and Improvement of Plasmid Stability by the par Locus

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;JIn, Chee-Hong;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.222-228
    • /
    • 2001
  • Vibrio metschnikovii strain RH530 is a non-pathogenic, industrially-important alkaline protease producer which has been isolated from wastewater. In this paper, we report on the transformation of this strain by using the method of electroporation. A field strength of $7.5\;kVcm^{-1}$ and $25\;{\mu}F$, and using a 0.2-cm cuvette, appeared to be the optimal conditions for electroporation of the cells with the recombinant pSBCm plasmid carrying the vapK alkaline protease gene and the ColE1 replicon. Cells were subjected to osmotic shock in order to remove extracelluar DNase, and adding 200 mM of sucrose to electroporation buffer cells showed an increased transformation efficiency. Maximum efficiency of transformation was obtained at an early exponential growth phase. Using all of the conditions mentioned above, we routinely obtained a transformation efficiency of more than $10^4{({\mu}g\;plasmid\;DNA)}^{-1}$. The stability of the plasmid pSBCm in V. metschnikovii RH530 was 25% after 18h of growth (27 generations) in the medium without antibiotic selection. The insertion of the par locus to the pSBCm increased the stability of the plasmid up to 42% without selective pressure. The increase in plasmid stability was accompanied by the increase in the productivity of alkaline protease in the recombinant V. metschnikovii strain RH530. Determining optimal conditions for the transformation of the industrially-important, nonpathogenic Vibrio strain, and the improvement of plasmid stability by introducing the par locus into the high copy number plasmid vector, will allow the development of procedures involved in the genetic manipulation of this strain, particularly for its use in the production of industrial enzymes such as alkaline protease.

  • PDF

Effect of Scutellariae Radix as a Novel Antibacterial Herb on the ppk(Polyphosphate Kinase) Mutant of Salmonella typhimurium

  • Hahm, Dae-Hyun;Yeom, Mi-Jung;H.Lee, Eun-Joo;Shim, In-Sop;Lee, Hye-Jung;Kim, Hong-Yeoul
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1061-1065
    • /
    • 2001
  • The antibacterial effects of water extracts of Scutellariate Radix (a dried root of Scutellaria baicalensis GEORGI) and its major flavonoid components, Baicalin and Baicalein, on Salmonella typhimurium, a representative enteric pathogen, were studied. Through a Kriby-Bauer disc analysis, the growth-inhibition activity of Scutellariae Radix against. S. typhimurium was found to be compatible with commercial antibiotics, such as ampicillin, chloramphenicol, and streptomycin. In contrast, the growth of a nonpathogenic E. coli strain was unaffercted by Scutellariae Radix. To examine the effect of polyphosphate kinase (ppk), a putative virulence factor, on the antibacterial activity of Scutellariae Radix, the growth profile of a ppk mutant of S. typhimurium was investigated in a tryptic soy broth containing different concentrations of water extracts of Scutellariae Radix. The ppk mutant was able to grow in 6 mg/ml of water extracts of Scutellariae Radix, whereas in 6 mg/ml of water extracts of Scutellariae Radix, whereas the wild-type could not, implying that the inactivation of ppk made S. typhimurium more resistant to the antibacterial activity of Scutellariae Radix. No enhanced resistance was observed in a ppk mutant of S. typhimurium complemented with a ppk expression vector. The attenuation of the virulence by ppk inactivation was also observed in a virulence assay using BLAB/c mice. Neither Baicalin nor Baicalein exhibited any growth-inhibition activity against S. typhimurium. The water extracts of Scutellariae Radix stimulated the transcription of ppk, especially in the early growth-stage of S. typhimurium.

  • PDF

Over-expression of BvMTSH, a fusion gene for maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase, enhances drought tolerance in transgenic rice

  • Joo, Joungsu;Choi, Hae Jong;Lee, Youn Hab;Lee, Sarah;Lee, Choong Hwan;Kim, Chung Ho;Cheong, Jong-Joo;Choi, Yang Do;Song, Sang Ik
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth. To avoid growth inhibition by trehalose 6-phosphate, we used a gene that encodes a bifunctional in-frame fusion (BvMTSH) of maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH) from the nonpathogenic bacterium Brevibacterium helvolum. BvMTS converts maltooligosaccharides into maltooligosyltrehalose and BvMTH releases trehalose. Transgenic rice plants that over-express BvMTSH under the control of the constitutive rice cytochrome c promoter (101MTSH) or the ABA-inducible Ai promoter (105MTSH) show enhanced drought tolerance without growth inhibition. Moreover, 101MTSH and 105MTSH showed an ABA-hyposensitive phenotype in the roots. Our results suggest that over-expression of BvMTSH enhances drought-stress tolerance without any abnormal growth and showes ABA hyposensitive phenotype in the roots.