Browse > Article

Food-Grade Expression and Secretion Systems in Lactococcus  

Jeong, Do-Won (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Hwang, Eun-Sun (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Lee, Hyong-Joo (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Publication Information
Food Science and Biotechnology / v.15, no.4, 2006 , pp. 485-493 More about this Journal
Abstract
Lactococcus species are noninvasive and nonpathogenic microorganisms that are widely used in industrial food fermentation and as well-known probiotics. They have been modified by traditional methods and genetic engineering to produce useful food-grade materials. The application of genetically modified lactococci in the food industry requires their genetic elements to be safe and stable from integration with endogenous food microorganisms. In addition, selection for antibiotic-resistance genes should be avoided. Several expression and secretion signals have been developed for the production and secretion of useful proteins in lactococci. Food-grade systems composed of genetic elements from lactic acid bacteria have been developed. Recent developments in this area have focused on food-grade selection markers, stabilization, and integration strategies, as well as approaches for controlled gene expression and secretion of foreign proteins. This paper reviews the expression and secretion signals available in lactococci and the development of food-grade markers, food-grade cloning vectors, and integrative food-grade systems.
Keywords
expression signal; secretion signal; food-grade selection marker; food-grade cloning vector; integrative food-grade system; Lactococcus lactis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Giuliano M, Schiraldi C, Marotta MR, Hugenholtz J, de Rosa M. Expression of Sulfalobus solfataricus ${\alpha}$-glucosidase in Lactococcus lactis. Appl. Microbiol. Biot. 64: 829-832 (2004)   DOI   ScienceOn
2 Arnau J, Hjerl-Hansen E, Israelsen H. Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl. Microbiol. Biot. 48: 331-338 (1997)   DOI
3 Bermudez-Humaran LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect. Immun. 71: 1887-1896 (2003)   DOI
4 Chatel JM, Langella P, Adel-Patient K, Commissaire J, Wal JM, Corthier G. Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin. Diagn. Lab. Immunol. 8: 545-551 (2001)
5 Enouf V, Langella P, Commissaire J, Cohen J, Corthier G. Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl. Environ. Microbiol. 67: 1423-1428 (2001)   DOI   ScienceOn
6 Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82: 279-289 (2002)   DOI   ScienceOn
7 Le Loir Y, Gruss A, Ehrlich SD, Langella P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 180: 1895-1903 (1998)
8 Araya T, Ishinashi N, Shlmamura S, Tanaka T, Takahashi H. Genetic and molecular analysis of the rpoD gene from Lactococcus lactis. Biosci. Biotech. Bioch. 57: 88-92 (1993)   DOI   ScienceOn
9 von Heijne G. The signal peptide. J. Membrane Biol. 115: 195-201 (1990)   DOI
10 Pugsley AP. The complete general secretory pathway in Gamnegative bacteria. Microbiol. Rev. 57: 50-108 (1993)
11 Jeong D-W, Choi YC, Lee JM, Kim JH, Lee JH, Kim KH, Lee HJ. Screening and characterization of secretion signals from Lactococcus lactis ssp. cremoris LM0230. J. Microbiol. Biotech. 14: 1052-1056 (2004)
12 Sibakov M, Koivula T, von Wright A, Palva I. Secretion of TEM ${\beta}$-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57: 341-348 (1991)
13 Henrich B, Klein JR, Weber B, Delorme C, Renault P, Wegmann U. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl. Environ. Microbiol. 68: 5429-5436 (2002)   DOI
14 Dickely F, Nilsson D, Hansen EB, Johansen E. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839-847 (1995)   DOI   ScienceOn
15 Liu C-Q. Khunajakr N, Chia LG, Deng Y-M, Charoenchai P, Dunn NW. Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38: 79-90 (1997)   DOI   ScienceOn
16 de Vos WM. Safe and sustainable systems for food-grade fermenta-tions by genetically modified lactic acid bacteria. Int. Dairy J. 9: 3-10 (1999)   DOI   ScienceOn
17 van Rooijen RJ, Gasson MJ, de Vos WM. Characterization of the promoter of the Lactococcus lactis lactose operon: contribution of flanking sequences and LacR repressor to its activity. J. Bacteriol. 174: 2273-2280 (1992)   DOI
18 Eaton TJ, Shearman CA. Gasson MJ. The use of bacterial luciferase genes as reporter genes in Lactococcus lactis: regulation of the Lactococcus lactis lactose gene. J. Gen. Microbiol. 139: 1495-1501 (1993)   DOI
19 Sanders JW, Leenhouts KJ, Haandrikman AJ, Venema G, Kok J. Stress response in Lactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacterial. 177: 5254-5260 (1995)   DOI
20 van der Meer JR, Rollema HS, Siezen RJ, Kuipers OP, de Vos WM. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Laclococcus lactis. J. Biol. Chem. 269: 3555-3562 (1994)
21 Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, de Vos WM, Kleerebezem M, Hols P. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 68: 5663-5670 (2002)   DOI
22 Williams AM, Fryer JL, Collins MD. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol. Lett. 68: 109-114 (1990)   DOI   ScienceOn
23 Pouwels PH, Leer RJ. Genetics of lactobacilli. Plasmids and gene expression. Antonie van Leeuwenhoek 64: 85-107 (1993)
24 Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. R. 64: 515-547 (2000)   DOI
25 Shanahan F. Probiotics in inflammatory bowel disease-therapeutic rationale and role. Adv. Drug Deliver. Rev. 56: 809-818 (2004)   DOI   ScienceOn
26 de Vos WM, Vaughan EE. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15: 217-237 (1994)   DOI
27 Robinson K, Chamberlain LM, Schotleld KM, Wells JM, Le Page RW. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat. Biotechnol. 15: 653-657 (1997)   DOI   ScienceOn
28 de Ruyter PGGA, Kupers OP, Beerthuyzen MM, van Alen-Boerrigter IJ, de Vos WM. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J. Bacteriol. 178: 3434-3439 (1996)   DOI
29 McCracken A, Timms P. Efficiency of transcription from promoter sequence variants in lactobacillus is both strain and context dependent. J. Bacteriol. 181: 6569-6572 (1999)
30 Jensen PR, Hammer K. The sequences of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Envrion. Microbiol. 63: 82-87 (1998)
31 Steidler L, Wells JM, Raemakers A, Vanderkerckhove J, Fiers W, Remaut E. Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 61: 1627-1629 (1995)
32 Sablon E, Contreras B, Vandamme E. Antimicrobial peptide of lactic acid bacteria: mode of action, genetic and biosynthesis. Adv. Biochem. Eng. Biotechnol. 68: 21-60 (2002)
33 Schleifer K-H, Kraus J, Dvorak C, Killper-Balz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and related streptococci to the genes Lactococcus. Syst. Appl. Mierobiol. 6: 183-195 (1985)   DOI
34 de Vos WM, Kleerebczcm M, Kuipers OP. Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content. Curr. Opin. Biotech. 8: 547-553 (1997)   DOI   ScienceOn
35 Waterfield NR, LePage PWF, Wilson PW, Wells JM. The isolation of lactococcal promoters and their use in investigating bacterial luciferase synthesis in Lactococcus lactis. Gene 165: 9-15 (1995)   DOI
36 Glenting J, Madsen SM, Vrang A. Fomsgaard A, Israelsen H. A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts. Appl. Environ. Microbiol. 68: 5051-5056 (2002)   DOI
37 Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol. Med. Mic. 34: 245-253 (2002)   DOI
38 Hwang K-T, Lee W, Kim G-Y, Lee S-K, Lee J, Jun W. The binding of aflatoxin $B_{1}$ modulates the adhesion properties of Lactobacillus casei KCTC 3260 to a HT29 colon cancer cell line. Food Sci. Biotechnol. 15: 227-231 (2006)
39 Sanders JW, Venema G, Kok J. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl. Environ. Microbiol. 63: 4877-4882 (1997)
40 Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic Streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9 (1983)
41 Gasson MJ, de Vos WM. Genetics and biotechnology of lactic acid bacteria. Chapman & Hall, London, UK. pp. 1-245 (1994)
42 Vos P, Simons G, Siezen RJ, de Vos WM. Primary structure and organization of the gene for a prokaryotic, cell-envelope located serine proteinase. J. Biol. Chem. 264: 13579-13585 (1989)
43 Kahala M, Paiva A. The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl. Microbiol. Biot. 51: 71-78 (1999)   DOI
44 Hugenholtz J, Smid EJ. Nutraceutical production with food-grade microorganisms. Curr. Opin. Biotech. 13: 497-507 (2002)   DOI   ScienceOn
45 Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Miereau I, Dabrowska M, Venema G, Kok J. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol. Gen. Genet. 253: 217-224 (1996)   DOI
46 Llull D, Poquet I. New expression system tightly controlled by zinc abailability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398-5406 (2004)   DOI   ScienceOn
47 Wells JM, Wilson PW, Norton PM, Gasson MJ, Le Page RW. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol. Microbiol. 8: 1155-1162 (1993)   DOI   ScienceOn
48 Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, Wells JM. Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect. lmmun. 66: 3183-3189 (1998)
49 Roy DG, Klaenhammer TR, Hassan HM. Cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lacotoccus lactis and Lactobacillus gasseri. Mol. Gen. Genet. 239: 33-40 (1993)
50 Poquet I, Ehrlich SD, Gruss A. An export-specitic reporter designed for Gram-positive bacteria: application to Lactococcus lactis. J. Bacteriol. 180: 1904-1912 (1998)
51 Froseth BR, Mckay LL. Development and application of pFM011 as a possible food-grade cloning vector. J. Dairy Sci. 74: 1445-1453 (1991)   DOI
52 Han TU, Jeong D-W, Cho SH, Lee J-H, Chung DK, Lee HJ. Construction of a lactococcal shuttle/expression vector containing a ${\beta}$-galactosidase gene as a screening marker. Korean J. Microbiol. Biotech. 33: 241-247 (2005)   과학기술학회마을
53 Kim JY, Lee S, Jeong D-W, Hachimura S, Kaminogawa S, Lee HJ. Effects of intraperioneal administration of Lactococcus lactis ssp. lactis ccllular fraction of immune response. Food Sci. Biotechnol. 14: 405-409 (2005)
54 Sorensen KI, Larsen R, Kibenich A, Junge MP, Johansen E. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl. Environ. Microbiol. 66: 1253-1258 (2000)   DOI
55 de Vos WM. Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 46: 281-295 (1987)   DOI
56 Jeong D-W, Choi YC, Lee JM, Kim JH, Lee JH, Kim KH, Lee HJ. Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230. Food Microbiol. 23: 82-89 (2006)   DOI   ScienceOn
57 Emond E, Lavallee R, Drolet G, Moineau S, LaPointe G. Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl. Environ. Microbiol. 67: 1700-1709 (2002)   DOI   ScienceOn
58 Drouault S, Corthier G, Ehrlich SD, Renault P. Expression of the Staphylococcus hyicus lipase in Lactococcus lactis. Appl. Environ. Microbiol. 66: 588-598 (2000)   DOI
59 Kuipres OP, de Ruyter PG, Kleerebezem M, de Vos WM. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 15: 135-140 (1997)   DOI   ScienceOn
60 Jeong D-W, Lee J-H, Kim KH, Lee HJ. A food-grade expression/secretion vector for Lactococcus lactis that uses an ${\alpha}$-galactosidase gene as a selection marker. Food Microbiol. 23: 468-475 (2006)   DOI   ScienceOn
61 Leenhouts K, Kok J, Venema G. Replacement recombination in Lactococcus lactis. J. Bacteriol. 173: 4794-4798 (1991)   DOI
62 Gil MT, Perez-Arellano I, Buesa J, Perez-Martinez G. Secretion of the rotavirus VP8 protein in Lactococcus lactis. FEMS Microbiol. Lett. 203: 269-274 (2001)   DOI   ScienceOn
63 de Vos WM, Simons G. Gene cloning and expression systems in Lactococci. pp. 52-105. In: Genetics and Biotechnology of Lactic Acid Bacteria. Gasson MJ, de Vos WM (eds). Chapman & Hall, London, UK (1994)
64 Cunningham-Rundles S. The eflect of aging on mucosal host defense. J. Nutr. Health Aging 8: 20-25 (2004)
65 Bermudez-Humaran LG, Langella P, Commissaire J, Gilbert S, Le Loir Y, L'Haridon R, Corthier G. Controlled intra-or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol. Lett. 224: 307-313 (2003)   DOI   ScienceOn
66 Koivula T, Sibakov M, Palva I. Isolation and characterization of Lactococcus lactis subsp. lactis promoters. Appl. Environ. Microbiol. 57: 333-340 (1991)
67 Miyoshi A, Jamet E, Commissaire J, Renault P, Langella P, Azevedo V. A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol. Lett. 239: 205-212 (2004)   DOI   ScienceOn
68 Walker SA, Klaenhammer TR. Molecular characterization of phage inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage ${\phi}$31. J. Bacteriol. 180: 921-931 (1998)
69 Takala TM, Saris PEJ. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisl. Appl. Microbiol. Biot. 59: 467-471 (2002)   DOI
70 Puohiniemi R, Simonen M, Muttilainen S, Himanen JP, Sarvas M. Secretion of the Escherichia coli outer membrane proteins OmpA and OmpF in Bacillus subtilis is blocked at an early intracellular step. Mol. Microbiol. 6: 981-990 (1992)   DOI   ScienceOn
71 Chandrapati S, O'sullivan DJ. Characterization of the promoter regions involved in galactose- and nisin-mediated induction of the nisA gene in Lactococcus lactis ATCC 11454. Mol. Microbiol. 2: 467-477 (2002)   DOI
72 Lee N-K, Kim T-H, Choi S-Y, Lee SK, Paik H-D. Identification and probiotic properties or Lactococcus lactis NK24 isolated from Jeotgal, a Korean fermented food. Food Sci. Biotechnol. 13: 411-416 (2004)
73 Mercenier A, Pouwels PH, Chassy BM. Genetics engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. pp. 252-293. In: Genetics and Biotechnology of Lactic Acid Bacteria. Gasson MJ, de Vos WM (eds). Chapman & Hall, London, UK (1994)
74 Kiewiet R, Kok J, Seegers JFML, Venema G, Bron S. The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Appl. Environ. Microbiol. 59: 358-364 (1993)
75 Bengmark S, Martindale R. Prebiotics and synbiotics in clinical medicince. Nutr. Clin. Pract. 20: 244-261 (2005)   DOI
76 Lee N-K, Kim H-W, Chang H-I, Yun C-W, Kim S-W, Kang C-W, Paik H-D. Probiotic propel1ies of Lactobacillus plantarum NK181 isolated from Jeotgal. a Korean fermented food. Food Sci. Biotechnol. 15: 227-231 (2006)   과학기술학회마을
77 Simons G, Rutten G, Hornes M, Mijhuis M, van Asseldonk M. Production of prochymosin in lactococci. Adv. Exp. Med. Biol. 306: 115-119 (1991)
78 Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oea-Luna R, Le Loir Y. Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl. Environ. Microbiol. 68: 917-922 (2002)   DOI
79 Gaeng S, Scherer S, Neve H, Loessner MJ. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophagelytic enzymes in Lactococcus lactis. Appl. Environ. Microbiol. 66: 2951-2958 (2000)   DOI
80 de Vos WM. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 2: 289-295 (1999)   DOI   ScienceOn
81 Israelsen H, Madsen SM, Vrang A, Hansen EB, Johansen E. Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl. Environ. Microbiol. 61: 2540-2547 (1995)
82 Kuipers OP, Beerthuyzen MM, Siezen RJ, de Vos WM. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Eur. J. Biochem. 216: 281-291 (1993)   DOI   ScienceOn
83 Ravn R, Arnau J, Madsen SM, Vrang A, Israelsen H. The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis. Gene 242: 347-356 (2000)   DOI   ScienceOn
84 Leenhouts K, Bolhuis A, Venema G, Kok J. Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl. Microbiol. Biot. 49: 417-423 (1998)   DOI
85 Liu C-Q, Leelawatcharamas V, Harvey ML, Dunn NW. Cloning vectors for lactococci based on plasmid encoding resistance to cadmium. Curr. Microbiol. 33: 35-39 (1996)   DOI
86 Platteeuw C, van Alen-Boreeigter I, van Schalkwijk S, de Vos WM. Food-grade cloning expression system for Lactococcus lactis. Appl. Environ. Microbiol. 62: 1008-1013 (1996)
87 Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biot. 68: 705-717 (2005)   DOI
88 O'Sullivan DJ, Walker SA, West SG, Klaenhammer TR. Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology 14: 82-87 (1996)   DOI
89 Hughes BF, McKay LL. Deriving phage-insensitive lactococci using a food-grade vector encoding phage and nisin resistance. J. Dairy Sci. 75: 914-923 (1991)   DOI
90 Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355 (2000)   DOI   ScienceOn
91 Simoes-Barbosa A, Abreu H, Silva Neto A. Gruss A. Langella P. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl. Microbiol. Biot. 65: 61-67 (2004)
92 Boucher I, Parrot M, Gaudreau H, Champagne CP, Vadeboncoeur C, Moineau S. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl. Envrion. Microbiol. 68: 6152-6161 (2002)   DOI
93 de Ruyter PGGA, Kuipers OP, de Vos WM. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 3662-3667 (1996)
94 Le Loir Y, Nouaille S, Commissaire J, Bretigny L, Gruss A, Langella P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl. Environ. Microbiol. 67: 4119-4127 (2001)   DOI
95 Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. II: 731-753 (2001)
96 Eichenbaum Z, Federle MJ, Marra D, de Vos WM, Kuipers OP, Kleerebezem M, Scott JR. Use of the lactococcal nisA promoter to regulate gene expression in Gram-positive bacteria: comparison of induction level and promoter strength. Appl. Environ. Microbiol. 64: 2763-2769 (1998)
97 Madsen SM, Arnau J, Vrang A, Givskov M, Israelsen H. Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol. Microbiol. 32: 75-87 (1999)   DOI   ScienceOn
98 Andersson H, von Heijne G. A 30-residue-long 'export initiation domain' adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. P. Natl. Acad. Sci. USA 88: 9751-9754 (1991)
99 Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P. Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl. Environ. Microbiol. 68: 910-916 (2002)   DOI
100 Smith H, Bron S, van Ee J, Venema G. Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis. J. Bacteriol. 169: 3321-3328 (1987)   DOI
101 Hindre T, Le Pennec J-P, Haras D, Dufour A. Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol. Lett. 231: 291-298 (2004)   DOI   ScienceOn
102 Hozapfel WH, Habere P, Geisen R, Bjorkroth J, Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73: 365S-373S (2001)   DOI
103 Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788 (2005)   DOI   ScienceOn
104 van Asseldonk M, de Vos WM, Simon G. Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous ${\alpha}$-amylase. Mol. Gen. Genet. 240: 428-434 (1993)   DOI
105 Perez-Martinez G, Kok J, Venema G, van Dijl J.M, Smith H, Bron S. Protein export elements from Lactococcus lactis. Mol. Gen. Genet. 234: 401-411 (1992)   DOI
106 Payne J, MacCormick CA, Griffin HG, Gasson MJ. Exploitation of a chromosomally integrated lactose operon for controlled gene. FEMS Microbiol. Lett. 136: 19-24 (1996)   DOI