• Title/Summary/Keyword: nonparametric Bayesian estimation

Search Result 19, Processing Time 0.025 seconds

Nonparametric Bayesian Estimation for the Exponential Lifetime Data under the Type II Censoring

  • Lee, Woo-Dong;Kim, Dal-Ho;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.417-426
    • /
    • 2001
  • This paper addresses the nonparametric Bayesian estimation for the exponential populations under type II censoring. The Dirichlet process prior is used to provide nonparametric Bayesian estimates of parameters of exponential populations. In the past, there have been computational difficulties with nonparametric Bayesian problems. This paper solves these difficulties by a Gibbs sampler algorithm. This procedure is applied to a real example and is compared with a classical estimator.

  • PDF

Nonparametric Bayesian methods: a gentle introduction and overview

  • MacEachern, Steven N.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.445-466
    • /
    • 2016
  • Nonparametric Bayesian methods have seen rapid and sustained growth over the past 25 years. We present a gentle introduction to the methods, motivating the methods through the twin perspectives of consistency and false consistency. We then step through the various constructions of the Dirichlet process, outline a number of the basic properties of this process and move on to the mixture of Dirichlet processes model, including a quick discussion of the computational methods used to fit the model. We touch on the main philosophies for nonparametric Bayesian data analysis and then reanalyze a famous data set. The reanalysis illustrates the concept of admissibility through a novel perturbation of the problem and data, showing the benefit of shrinkage estimation and the much greater benefit of nonparametric Bayesian modelling. We conclude with a too-brief survey of fancier nonparametric Bayesian methods.

Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data

  • Kim, Hee-Jeong;Kim, Yong-Dai;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • In this paper, we develop a nonparametric Bayesian methodology of estimating an unknown distribution function F at the given survival time with current status data under the assumption of Dirichlet process prior on F. We compare our algorithm with the nonparametric maximum likelihood estimator through application to simulated data and real data.

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.611-622
    • /
    • 2014
  • The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

Bayesian Estimation of Uniformly Stochastically Ordered Distributions with Square Loss

  • Oh, Myong-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.295-300
    • /
    • 2011
  • The Bayesian nonparametric estimation of two uniformly stochastically ordered distributions is studied. We propose a restricted Dirichlet Process. Among many types of restriction we consider only uniformly stochastic ordering in this paper since the computation of integrals is relatively easy. An explicit expression of the posterior distribution is given. When square loss function is used the posterior distribution can be obtained by easy integration using some computer program such as Mathematica.

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.713-722
    • /
    • 2009
  • The estimation of odds ratio and corresponding confidence intervals for case-control data have been done by traditional generalized linear models which assumed that the logarithm of odds ratio is linearly related to risk factors. We adapt a lower-dimensional approximation of Gu and Kim (2002) to provide a faster computation in nonparametric method for the estimation of odds ratio by allowing flexibility of the estimating function and its Bayesian confidence interval under the Bayes model for the lower-dimensional approximations. Simulation studies showed that taking larger samples with the lower-dimensional approximations help to improve the smoothing spline estimates of odds ratio in this settings. The proposed method can be used to analyze case-control data in medical studies.

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.

Bayesian Methods for Wavelet Series in Single-Index Models

  • Park, Chun-Gun;Vannucci, Marina;Hart, Jeffrey D.
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.83-126
    • /
    • 2005
  • Single-index models have found applications in econometrics and biometrics, where multidimensional regression models are often encountered. Here we propose a nonparametric estimation approach that combines wavelet methods for non-equispaced designs with Bayesian models. We consider a wavelet series expansion of the unknown regression function and set prior distributions for the wavelet coefficients and the other model parameters. To ensure model identifiability, the direction parameter is represented via its polar coordinates. We employ ad hoc hierarchical mixture priors that perform shrinkage on wavelet coefficients and use Markov chain Monte Carlo methods for a posteriori inference. We investigate an independence-type Metropolis-Hastings algorithm to produce samples for the direction parameter. Our method leads to simultaneous estimates of the link function and of the index parameters. We present results on both simulated and real data, where we look at comparisons with other methods.

  • PDF

Nonparametric Bayesian Statistical Models in Biomedical Research (생물/보건/의학 연구를 위한 비모수 베이지안 통계모형)

  • Noh, Heesang;Park, Jinsu;Sim, Gyuseok;Yu, Jae-Eun;Chung, Yeonseung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.867-889
    • /
    • 2014
  • Nonparametric Bayesian (np Bayes) statistical models are popularly used in a variety of research areas because of their flexibility and computational convenience. This paper reviews the np Bayes models focusing on biomedical research applications. We review key probability models for np Bayes inference while illustrating how each of the models is used to answer different types of research questions using biomedical examples. The examples are chosen to highlight the problems that are challenging for standard parametric inference but can be solved using nonparametric inference. We discuss np Bayes inference in four topics: (1) density estimation, (2) clustering, (3) random effects distribution, and (4) regression.