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Abstract

The Bayesian nonparametric estimation of two uniformly stochastically ordered distributions is studied. We
propose a restricted Dirichlet Process. Among many types of restriction we consider only uniformly stochastic
ordering in this paper since the computation of integrals is relatively easy. An explicit expression of the poste-
rior distribution is given. When square loss function is used the posterior distribution can be obtained by easy
integration using some computer program such as Mathematica.
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1. Introduction

Stochastic ordering has been widely used to explain and solve many statistical problems such as as-
sociation of random variables as well as comparing two or more survival functions. Although the
three types of stochastic ordering (usual stochastic ordering, uniform stochastic ordering and likeli-
hood ratio ordering) have been widely used, the estimation of distribution functions under stochastic
ordering constraint is not easy except for the uniform stochastic ordering case. Note that likelihood
ratio ordering is the strongest and the usual stochastic ordering is the weakest among three types of
stochastic ordering.
The X distribution is said to be uniformly stochastically larger than the Y distribution if

1 - F(x)

=G is nondecreasing for x in (—00, G’l(x)) s

where F and G are cdf’s of X and Y, respectively. The conditional distributions (given that the random
variables are at least of a certain size) are all stochastically ordered (in the usual sense) in the same
direction.

This type of ordering is certainly of interest when populations correspond to survival times for
different medical treatments. Even if the better of two treatments (better in the sense that its survival
time stochastically dominates that of the other treatment) is administered initially, it may not be the
better treatment when patients are examined at a later point in time. However, there is no doubt which
treatment is preferred at any point in time if the treatment populations are ordered in this stronger
sense.

Statistical inference including estimation and testing under uniform stochastic ordering has re-
ceived a substantial amount of interest recently. Dykstra ef al. (1991) studied nonparametric maxi-
mum likelihood estimation and testing for discrete population when right-censored are present. Rojo
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and Samaniego (1991, 1993) show that nonparametric maximum likelihood estimators do not have
the consistence property in either one or two sample cases. They proposed an estimator that is con-
sistent but lacks some desirable properties. Mukerjee (1996) proposed a one-parameter family of
estimator. On the other hand, limited research has emerged from the Bayesian point of view. Dyk-
stra and Laud (1981) studied the Bayesian estimation problem arising in reliability. Proschan and
Singpurwalla (1980) proposed a Bayesian estimation procedure which uses a pooling adjacent viola-
tors algorithm(PAVA).

Bayesian nonparametric estimation has been widely used since the seminal papers by Ferguson
(1973) and Doksum (1974), as well as Antoniak (1974). Ferguson introduced the Dirichlet process
as a prior distribution which became a main tool in Bayesian nonparametric analysis. Ferguson and
others studied many properties of the Dirichlet process. Antoniak (1974) studied the properties of
a mixture of Dirichlet processes. Another important property was discovered by Doksum, which is
known as “neutral to the right” that enables an analysis of incomplete data, especially censored data.
Dykstra and Laud (1981) studied Bayesian nonparametric estimation of a hazard rate function when
it is assumed to be increasing. The so-called Gamma process is used as a prior distribution that is not
neutral to the right.

Recently Bayesian nonparametric estimation under stochastic ordering has been of interest among
many researchers. Dunson and Peddada (2008) proposed the classes of a restricted dependent Dirich-
let process prior for Bayesian nonparametric inference on stochastic ordering. Evans et al. (1997)
studied Bayesian analysis of stochastically ordered distributions of categorical variables. Hoff (2003)
studied Bayesian methods for partial stochastic orderings. More recently, Karabatsos and Walker
(2009) studied Bayesian nonparametric inference of stochastically ordered distributions.

To our knowledge no Bayesian nonparametric inference under uniform stochastic ordering have
been studied yet. In this paper we introduce a restricted Dirichlet process which will serve as a prior
distribution for the Bayesian nonparametric estimation of the distribution functions when restriction
of uniform stochastic ordering between two functions is imposed. This approach has a significant
advantage over the existing Bayesian approaches. In most Bayesian inference cases we use Gibbs
sampler or other numerical computation methods (such as the Metropolis-Hasting algorithm) to obtain
the results. However, in this approach we do not need any numerical methods but need only the
evaluation of multiple integrations analytically or numerically. In Section 3, Bayesian nonparametric
estimator under a square loss function is studied. The estimators are expressed in terms of the ratios of
two double integrals that can be approximated easily. In Section 4, we briefly discuss future research
topics then include handling censored data.

2. Restricted Dirichlet Process and Posterior Distribution

Let @;(-) be non-null finitely additive measure on (R*, 8) where R* = (0, o) and 8 is the Borel o-field
on R*. Consider a random measure (Py, P3,..., P,). Suppose for every k = 1,2,..., and for every
measurable partition By, B,, ..., By of R* the probability density function of

(Pl(Bl), Pi(By),...,P1(By),...,Py(B1), Pe(Bo), .. -,Pg(Bk))
is defined as follows; let p;; = Pi(B;), p; = (pi1, Pi2> - - - » Pir)» and @;; = a;(B;) fori =1, ..., g, then

f(pls'-'3pg|a17""ag)

a;;—1 . .
_ K-TI%, _’;:,pij , if (pl,...,pg)e{(pl,...,pg)eng.plﬁpzﬁmﬁpg},
0, otherwise ,
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where < is a quasi order, which requires reflexive and transitive, defined on an index set {1,2,..., g}
and K is determined so that f(pi,...,Pglo1,...,a,) be a joint probability density function. Then
we say that the random measure (Pi, Py, ..., P,) form a restricted Dirichlet process on (R*, B) with
parameters ay, s, . . ., .

Many types of restrictions may be associated to each corresponding quasi order or more specif-
ically a partial order that requires antisymmetry in addition to quasi order. Among such restrictions
stochastic ordering has received considerable interests. There are several types of stochastic order-
ings including stochastic ordering of usual sense, uniform stochastic ordering, and likelihood ratio
ordering. We mainly focus on uniform stochastic ordering next.

To avoid the notational complexity we consider only the case of g = 2. The extension to the
case of general g is quite straightforward. Now we determine K so that f(p;, pzl@1, @2) be a density
function under uniform stochastic ordering. It is not difficult to show that uniform stochastic ordering
between two multinomial distributions p; and p,, for example, p; < p2, can be expressed as

2j . S
is nondecrasing in i

which is equivalent to

k k
=i P2j < Ljmiv1 P2j

T <= , fori=1,...,k-1.
Zj=iPj  Zjmin1 D1y

Then the normalizing constant K must satisfy

k
_ ayji—1 i—1
K1=f [ 1717 pyy 1. po),
A :
Jj=1

where

oy S P
A= {(Pl,pz) c R2k . Zi:l P2j < ZJZHI DP2j

<= s forizl,...,k—l}.
=i Pl jeiv1 P1j

The integration seems to be intractable. We can simplify the integration by introducing a one-to-one
transformation of variables. Let u; = ZIE:,-H pie/ Z’;ziplg, v = Z]E:i+1 1257, Z’;zi p2¢- Then we have

=~

i~1 -1

pun=1-u, pliz(l_“i)l—l”fa for i=1,....k=1, pi=| | ue
(=1 =1
i-1 k=1
pu=1-vy, pzi=(1—vf)l—[w, for i=1,....k=1, pu=||ve
(=1 (=1
and
k=2
a(p1.p2)

k—1—i_ k—1—i
|J] = = l—[ui RS

i=1

o(u,v)
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By some algebra we can show that

k k
—i1 A1 1 - r_i 1 1 -
ﬂ l,tizf"” 1 (1 - ui)”" lvizl'”] * (1 = Vi)a2' lduidvi.

O<u;<v;<1

-1
K=
|

The integration is greatly simplified; however, we still need to evaluate the double integral that cannot
be obtained analytically. This will be discussed later.

Next we discuss about the posterior distribution given data. Let Xi,...,X,, and Y1,...,Y, be two
independent random samples from two populations. We assume that all observations are complete,
that is, there are no censored observations. Let §(B) = 1 if x € B, zero otherwise. Then

(zm: 6x,(B1), .-, zml 5X,(Bk)] and [Z Sy,(B1), ..., Z Sv,(By)
j=1 j=1 j=1 j=1

have multinomial distributions with parameters (m, py,..., px) and (n,qi, ..., qr), respectively. Fol-
lowing the similar steps in the proof of Theorem 1 of Ferguson (1973) we can easily show that the
posterior distribution of (p;, py) is also a restricted Dirichlet process. The probability density function
is, for (p1, p2) € A,

k
’ 0/u+2’}’:1 Ox,(B)—1 ani+ ';:](5)/‘(3,')—]
f(p1,p2) =K -l_[p” T, i
i=1
where
T K (@20 6x,(B))-1
— i=i aqi+ - )— . m v N
(K')! = l_l e Ve X B g e B 0 (B
=1 gcpvi<l
Shein (@2t 5iy 0y, (B))-1 S5y (B
X v J a2 +Xe (3 1) a —V,‘)az'+z-’='6y1(3’) lduidvi.

3. Estimation under Square Loss

Consider the space (R, 8), where R is the real line and B is the associated o-field of Borel sets. Let
X1,X,,...,X,, be iid with distribution function F and Y;,Y>,...,Y, be iid with distribution function
G. We are interested in finding F' and G subject to uniform stochastic ordering. Let Q be the space of
all distribution functions and the loss function be

L((F.G),(F.C)) = [ ) {(F(t) - Fw) + (60 - G(z))z} dw(1),
where w is a given finite measure on (R, 8B),
F(t) = Pr[(—00,1]], G(1) = Pg[(—0o0,1]]

and F'(t) and G () are restricted estimates of F(¢) and G(?), respectively.
Suppose B} = (—oo,t] and B, = (t,00). Then it is well known that F(t) = E(P(By)) and G(f) =
E(Q(By)). More specifically

K(ay,a1,b,,by) G = K(az,ay,b,,by)
K(az,ay + 1,b3,by)’ K(az,ai,by,by +1)°

F(@) =
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where, fori =1, 2,

@y + 25)(,»(31‘) -1,
=1

a; =
J
bi = az + Z5Yj(Bi) -1,
j=1
K '(a,b,c,d) = f f u(1 = w1 = v)*dudv.
0<u<v<l

It is important to evaluate the double integral. First suppose b is an integer. Using binomial
formula we have (1 —u)’ = ¥, (?)(—l)h"'u”"' and

b 1 v
, b 4 A
ff u“(l—u)”V‘(l—V)ddudv=2(l.)(—1)”"f [f u‘“h_’du} V(1 —v)ldy
0<u<v<l1 i=0 0 0
b 1
b . 1 )
— -1 b—i a+b—i+1+c 1= dd
;(i)( ) a+b—i+1f0v (1 =vydy
and hence
K-l(abcd)—zb: C)=D" Ta+b+e—i+DMd+1)
T _i:0a+b—i+1 Ta+b+c+d—i+3)

where I'(-) is a gamma function.
Next suppose b is not an integer. From a well-known formula

y - (D)
a1 — bd — a+l NPk k’
fo"‘( uy'du =v 2 Ka+1+k)

where (a);y = a(a —1)---(a — k + 1) with convention 0/0 = 0. By similar manner and some algebra
we have the following;

Ta+b+2Td+1) = (1 +a)(=b)i(2+a+c)
I+al(a+c+d+3) — KQ+aB+a+c+d)y

K‘l(a, b,c,d) =

On the other hand, we may use some computational package such as Mathematica.

4. Further Research

We have discussed about the Bayesian nonparametric estimation of two distribution functions under
uniform stochastic ordering with square loss. In estimating two distributions we only use complete
data or uncensored data. In a real problem, such as the survival analysis of cancer patients, we need
to be able to handle incomplete data, i.e., censored one. We note that the Dirichlet process is “neutral
to the right” that enables the estimation of distribution functions with censored data, refer to Ferguson
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(1973) and Doksum (1974). We are, however, not aware that the restricted Dirichlet process has the
same property; however, we may be able to estimate distribution functions under square loss. For
estimation problem of a distribution function, refer to Ferguson and Phadia (1979) and Susarla and
Van Ryzin (1976).

We can extend this problem to the estimation of g distribution functions under various types of
uniform stochastic ordering, for instance, simple order and simple tree order. The solution to those
problems may involve a multiple integral like other problems in Bayesian analysis.
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