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Abstract

The estimation of odds ratio and corresponding confidence intervals for case-control data have been done by
traditional generalized linear models which assumed that the logarithm of odds ratio is linearly related to risk
factors. We adapt a lower-dimensional approximation of Gu and Kim (2002) to provide a faster computation in
nonparametric method for the estimation of odds ratio by allowing flexibility of the estimating function and its
Bayesian confidence interval under the Bayes model for the lower-dimensional approximations. Simulation stud-
ies showed that taking larger samples with the lower-dimensional approximations help to improve the smoothing

spline estimates of odds ratio in this settings. The proposed method can be used to analyze case-control data in
medical studies.
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1. Introduction

A logistic regression model with binary response data is

px) \
o o)

where p(x) = P(Y = 1|x), Y is the binary response taking values O or 1 and X is a vector of covariates.
A typical generalized linear model assumes 7(x) = x’ 8. However, the parametric assumptions may
be too rigid in some applications. Semiparametric or nonparametric function estimation techniques
have been developed by many researchers so that they can relax such a strong assumptions in a cer-
tain function form. Among various nonparametric function estimation methods, smoothing splines
have been popularly used in nonparametric regression settings. see Gu (2002) for details. However,
it suffers practical limits due to heavy computation for large data. In order to overcome such com-
putational burden, various approximations were suggested (see Luo and Wahba, 1997; Xiang and
Wahba, 1998; Lin et al., 2000; Gu and Kim, 2002). Gu and Kim (2002) suggested an effective lower-
dimensional approximations for faster computation of smoothing splines for exponential families by
using a random subset of kernel basis. Kim (2003) and Kim and Gu (2004) suggested a Bayes model
for the lower-dimensional approximations in Gaussian smoothing splines. Wang (1997) considered
the estimation of odds ratio by using smoothing splines technique and showed that the Bayesian con-
fidence interval for the odds ratio and its bias-corrected odds ratio with full basis has Wahba (1983)’s
frequentist across-the-function coverage properties. This paper extends Kim and Gu (2004)’s Bayes
model for the lower-dimensional approximations to nonparametric logistic regression where the es-
timation of the odds ratio in smoothing spline settings and its Bayesian confidence intervals are of
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primary interest. We explore whether the Bayesian confidence interval for the odds ratio with the
lower-dimensional approximation has similar frequentist properties through simulation studies.

The rest of the article is organized as follows. In Section 2, smoothing splines and Bayesian model
based on the lower-dimensional approximation are reviewed. In Section 3, odds ratio estimation and
its Bayesian confidence interval based on the lower-dimensional approximation are proposed. Section
4 presents the computation of Bayesian confidence intervals. Monte Carlo simulation results are
shown in Section 5.

2. Smoothing Splines and Bayes Model

Assume that Y; is i binary response, i = 1,...,n, and x; is a covariate of i subject. A smooth-
ing spline in nonparametric logistic regression is the minimizer of the following penalized logistic
likelihood functional

n

1 A
= {Yin(x)) — log(1 + exp(n(x))} + %J m, 2.1
i=1

where 7(x;) is unknown smooth function, smoothing parameter A plays the important role of control-
ling the trade-off between goodness-of-fit and roughness, and J(n) is a penalty function. In fact, the
minimizer of (2.1) lies in H = N;@®H,, where N; = {i7 : J(n) = 0} is the null space of J(17), the space
H, is a reproducing kernel Hilbert space(RKHS) with J(7) as the square norm, and & indicates tensor
sum decomposition. Note that a space H in which the evaluation functional [x]f = f(x) is contin-
uous is called a RKHS possessing a reproducing kernel(RK) R(:, -), a non-negative definite function
satisfying (R(x, -), f(-)) = f(x), for all f € H, where (-, -) is the inner product in H.
The minimizer of (2.1) can be expressed as

) = D dy(0) + ) eRy(xi, %), 22
v=1 i=1

where {¢,} is a basis of N; and R; is the RK in H;. We may rewrite 5 as n(x) = 50(x) + 171(x), where
no € Hy = spanf{g,,v =1,...,m} and n; € H;.

Gu and Kim (2002) suggested a lower-dimensional approximations for faster computation in
smoothing splines to relieve the computational burden and practical limit in the use of smoothing
splines. They showed that the minimizer of the penalized likelihood functional in  shared the same
convergence rates as one in the lower-dimensional functional space H, = N; @ span{R;(u;,-),j =
1,...,q}, where {u;, j = 1,...,q} are random subsets of {x;,i = 1,...,n), as long as g = n?/(Prtite,
where for some p € [1,2], r > 1, and € > 0 is arbitrary. For the cubic spline, r = 4 is used. Then the
lower-dimensional approximation in the smoothing spline model is expressed as

m q

) = D dd )+ ) R, x) = ¢Td+£ e, (2.3)
v=1 Jj=1

where ¢ and £ are vectors of functions and d and ¢ are vectors of coefficients; g = n for the exact so-
lution in . Substituting (2.3) into (2.1), one calculate d and ¢ by minimizing the resulting penalized
likelihood functional with respect to d and c.

The Bayes model for the lower-dimensional approximations in Gaussian settings was proposed
by Kim and Gu (2004). Assume that = 79 + 77, where 1o has a diffuse prior in N; and 5; has a



Odds Ratio Estimation 715

Gaussian process prior with zero mean and the covariance function

E|mGomxp] = bRy (x:.u7) Q'R (. x,).
where Q" is the Moore-Penrose inverse of @ = R;(u,u’), {u ;} is a random subset of {x;}. Recall the
notation £; = R,(u;, ) and RT = £(x7). Letting M = RQ*R" + nAl, where I is an identity matrix, and

under the prior stated above, one has

E[nxlY]=¢"d+ &' ¢,

where
d=(s"M7's) sTMY,
c=QR (M”l -Mis (sTms) S"M‘-‘)Y
and
WO ¢ ove o7 (s7m's) ' 6

-4 (s"M's) " STMRQ¢
~E O R M (STMS) 6
— T Q'R (M-l _Mls (STM—ls)‘l STM—I)RQ+§’

where § is a matrix of # x m with (i, v)™ row ¢,(x;), R is a matrix of n X g with (i, j)" entry R,(x;,z,),
and @ is a matrix of ¢ x g with (i, /)" entry R;(u;, u;).

Wahba (1983) showed that the pointwise Bayesian confidence intervals has the frequentist cover-
age on average. Gu (2002) extended her across-the-function coverage property to Bernoulli data in
smoothing spline with full basis. Also, Wahba er al. (1995) extended the results of Gu and Wahba
(1993) to construct approximate Bayesian confidence intervals for the smoothing spline estimates for
exponential families. We extend the Bayes model of Kim and Gu (2004) to construct the approxi-
mate Bayesian confidence intervals for odds ratic by using the lower-dimensional approximations in
logistic smoothing splines model.

Theorem 1. Suppose that 7, is the minimizer of (2.1). Under the prior stated as above, the approxi-
mate posterior mode of 11 given Y is equal to n,. Furthermore, the approximate posterior distribution
Sorn given'Y is Gaussian with mean 1, and variance that can be derived from penalized weighted least
squares functional in Kim and Gu (2004) with M = RQ'RT + nAW~', where W = diag(wy, ..., wy)
with w; = p,(l + pz)

3. Odds Ratio Estimation

Suppose that, for a covariate x;, we are interested in the odds ratio of X, = (xy,..., x,) and x; =
(X1s. - - ., %,)7 when other covariates are fixed. The odds ratio of X, and x, is

X eﬂ(xt)
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In order to get the (approximate) Bayesian confidence interval for the odds ratio, we need to derive
the posterior distribution of n(x;) — 17(x;) given Y in logistic regression.

Theorem 2. Let p = 1%/b. Under the prior stated in Section 2, letting p — oo, the approximate
posterior distribution of 1(x,) — 11(X;) given Y is Gaussian with mean 1,(X,;) — n.(X;)and the variance

var(n(x,) — n(x)[Y) = var(n(x,)|Y) + var(n(x,)|Y) — 2cov(n(x,), n(x:)|Y).
The covariance between 11(X,) and n(x;) is

ML 7 5,y (571715 g — 7 e (7 a7 ) sTMRQ R

—R(s)Q'RT (STM-IS)’1 STM'¢"(x,) + RS)Q*R®)T

~R(s)O'R” (M—1 - Ml (sTMs) STM‘I)RQ"R(t)T,

where R(s) = (Rj(Xs, u1), - - - , Ry(Xs, ).

Therefore, the approximate 100(1 — a)% Bayesian confidence interval for the odds ratio of x, and

X, can be constructed as
X, X;
(OR(;—)exp (—z% ,/4,02), OR(X—S)exp (z% \/902)),

S

where ¢* = var(n(x,) — n(x,)|Y).

4. Computation

The smoothing spline estimates of odds ratio can be calculated by using the smoothing spline esti-
mates of 77 by minimizing (2.1) through Newton-Raphson iteration for fixed smoothing parameters.
Quadratic approximations at n = #j of log penalized logistic likelihood functional lead to the pe-
nalized weighted likelihood functional with pseudo-data Y = 57— W5, where ¥ = =Y + p and
W = diag(wy,...,w,) with w; = p;(1 + p;). Then the resulting normal equation for d and ¢ can
be solved by Cholesky decomposition followed by forward and backward substitutions (Kim, 2003;
Kim, 2009). Smoothing parameters are selected via the alternative generalized approximate cross-
validation(AGACYV) score of Gu and Xiang (2001). The calculation of the approximate posterior
variances and covariances given in Theorem 2 can be done by taking the diagonals and off-diagonals
of oA, (1) respectively, e.g., see Kim and Gu (2004), where A,,(1) is the smoothing matrix. The
penalty we used is f ij. Note that the lower-dimensional approximations in smoothing splines estab-
lished in Gu and Kim (2002) and Kim and Gu (2004) were available in existing software R “gss”
packages. Our methods can use it with extra modifications to calculate posterior covariances. We
used g = 10n?/° for the lower-dimensional approximations as Kim and Gu (2004) suggested.

5. Simulation Study

Wang (1997) observed in his simulation studies that smoothing spline estimates of odds ratios are
biased especially when one of two points of odds ratio is either at peak or at the valley and sug-
gested a bootstrap bias-corrected estimate of odds ratio, but the evaluation of it was somewhat lim-
ited. The bootstrap bias-corrected estimation in smoothing spline can be done as followings. First
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Table 1: Estimates of odds ratio for 7, (top) and 7,(bottom) with full basis and reduced basis(inside the

parenthesis).
n x;(base) X True OR OR Stdev 95% coverage 90% coverage

0.1 0.0828 0.1260(0.1259) 0.0799(0.0799) 0.90(0.90) 0.79(0.79)

100 05 0.2 0.2205 0.2657(0.2656) 0.1481(0.1484) 0.96(0.96) 0.90(0.90)
’ 0.3 0.5983 0.5276(0.5305) 0.1915(0.1919) 0.99(0.99) 0.96(0.95)

04 0.9238 0.8491(0.8499) 0.1647(0.1645) 1.00(1.00) 1.00(1.00)

0.1 0.0828 0.1074(0.1079) 0.0446(0.0446) 0.91(0.91) 0.80(0.80)

300 05 0.2 0.2205 0.2394(0.2392) 0.0821(0.0821) 0.97(0.97) 0.89(0.89)
’ 03 0.5983 0.5431(0.5422) 0.1617(0.1635) 0.99(0.99) 0.94(0.94)

0.4 0.9238 0.8703(0.8704) 0.1394(0.1405) 1.00(1.00) 1.00(1.00)

0.1 0.0828 0.0984(0.0984) 0.0320(0.0320) 0.91(0.91) 0.86(0.87)

500 05 0.2 0.2205 0.2287(0.2287) 0.0749(0.0751) 0.94(0.94) 0.89(0.89)
’ 0.3 0.5983 0.5185(0.5187) 0.1877(0.1888) 0.94(0.94) 0.88(0.88)

0.4 0.9238 0.8343(0.8361) 0.1727(0.1725) 1.00(1.00) 1.00(1.00)

n x;(base) X True OR OR Stdev 95% coverage 90% coverage

04 0.4357 1.1889(1.2037) 0.9882(0.9857) 0.61(0.61) 0.53(0.53)

100 02 0.6 7.0104 4.6104(4.6658) 4.5268(4.4634) 0.96(0.96) 0.91(0.91)
’ 0.8 0.3948 0.7666(0.7646) 0.6748(0.6723) 0.85(0.85) 0.74(0.73)

1.0 0.0758 0.0595(0.0593) 0.1978(0.2050) 0.96(0.96) 0.88(0.87)

04 0.4357 0.6500(0.6461) 0.3658(0.3624) 0.88(0.88) 0.80(0.79)

300 02 0.6 7.0104 5.6834(5.7262) 2.9581(2.9878) 0.98(0.98) 0.97(0.97)
’ 0.8 0.3948 0.5810(0.5917) 0.2791(0.2772) 0.87(0.87) 0.82(0.82)

1.0 0.0758 0.0611(0.0638) 0.0688(0.0687) 0.92(0.91) 0.86(0.86)

04 0.4357 0.5266(0.5285) 0.1718(0.1725) 0.96(0.96) 0.93(0.93)

500 02 0.6 7.0104 5.9574(5.9711) 2.5051(2.5162) 0.96(0.96) 0.92(0.92)
’ 0.8 0.3948 0.5170(0.5151) 0.2016(0.2024) 0.91(0.90) 0.86(0.85)

1.0 0.0758 0.0540(0.0541) 0.0556(0.0559) 0.93(0.94) 0.86(0.86)

generate bootstrap samples from smoothing spline estimate. Then calculate the smoothing spline es-
timate of the parameter from these bootstrap samples. After calculating the estimate of the bias, the
bias-corrected estimate is obtained. We re-evaluate the smoothing spline estimates of odds ratio and
calculate the across-the-function coverage of Bayesian confidence intervals throughout simulations.
Simulated data were generated from a logistic distribution using the following test functions,

mx) = 5,310,5()6) + 5,37‘7(36) + 5,35,10(36) -1
m() = 2(10°x(1 - x° + 1041 - 0'%) - 2,

where x = ((1 : n) —.5)/n and B, 4(x) = [[(a + b)/T(@I'(H)]x* (1 — x)>"1. Note that n;,i = 1,2,
indicates the true function 7. One hundred replicates were generated for each test function with
samples of size n = 100, 300 and 500. For each replicates, the cubic smoothing splines 77; was
calculated with smoothing parameter selected by using AGACV score. To get odds ratios, we used
x; = 0.5 as the base and x;, = 0.1, x, = 0.2, x, = 0.3 and x, = 0.4 for the test function 7. For 1y,
we used x; = 0.2 as the base and x, = 0.4, x, = 0.6, x, = 0.8 and x, = 1.0. Note that he made an
error to switch the test functions in his simulation results. Simulations were conducted to calculate
the odds ratio estimates with 90% and 95% Bayesian confidence intervals with full basis(g = n) and
with reduced basis(g = 10n?/?) for 100 replicates.

Table 1 summarized the true odds ratios, estimated odds ratios as medians of 100 estimates of
odds ratios, its standard deviations and the across-the-function coverage of 95% and 90% Bayesian
confidence intervals with full basis. Those with reduced basis are inside the parenthesis. All results
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Figure 1: Estimated odds ratio for n; (left) and n,(right) when n is increased: solid line is true odds ratio, dashed
line is estimated odds ratio with n = 100, dotted line is estimated odds ratio with n = 300, and dotted-dashed line
is estimated odds ratio with n = 500.

showed no difference between with full basis and with reduced basis, but computations with reduced
basis were much faster. Our estimates of odds ratio get closer to true odds ratios when the sample size
gets larger, which is not surprising, yet they were biased toward unity as Wang (1997) pointed out.
Bootstrap bias-corrected procedure wasn’t working well here, a possible reason being that bootstrap-
ping estimates were calculated from bootstrapping samples from the initial smoothing spline estimate
whose performance was dependent on the smoothing parameter estimates. Thus, smoothing induced
bias in estimates of 77 needs to be avoided while bootstrapping. In order to do it, more complex algo-
rithm needs to follow. Instead of developing complex algorithm, taking larger sample help to solve
such problems. Figure 1 showed the estimates of odds ratio when sample size gets increased. Figure 2
and 3 showed the pointwise coverage of 95% and 90% Bayesian confidence intervals for odds ratios
from lower-dimensional approximations. The estimation of odds ratioes with 1; showed relatively
stable performance, whereas that with 7, showed better performance when the sample size gets larger
even though its across-the-function coverage in Table 1 is a bit decreasing which is not significant
considering the corresponding confidence level. However, taking larger samples limits the practical
use of smoothing splines. Lower-dimensional approximations is one solution to relieve the computa-
tion burden for estimation of odds ratio in smoothing splines settings. The proposed method can be
used to analyze the binary data such as case-control data in medical studies.

6. Discussion

This paper discussed the odds ratio estimation in smoothing splines with the lower-dimensional ap-
proximation by means of simulations. Lowering the dimension of the estimating function space
helped the computation of the smoothing spline estimate of the odds ratio more effectively for larger
sample size while maintaining the performance of the estimate. Across-the-function coverage prop-
erty of the pointwise Bayesian confidence intervals of smoothing spline estimate was evaluated. While
the coverage shows the increasing pattern overall as the sample size increases compared to the corre-
sponding confidence level, the performance of the estimate of odds ratio worked well.
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Figure 2: Pointwise coverage of Bayesian confidence intervals of estimated odds ratio for for n,. Left column is
for 95% Bayesian confidence intervals and right column is for 90% Bayesian confidence intervals. From top to
bottom, n = 100, 300 and 500.
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Figure 3: Pointwise coverage of Bayesian confidence intervals of estimated odds ratio for for n,. Left column is
for 95% Bayesian confidence intervals and right column is for 90% Bayesian confidence intervals. From top to
bottom, n = 100, 300 and 500.
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Appendix A: Proof of Theorem 1

‘We adapt the proof of Gu (1992) and Section 5.4 in Gu (2002) and use the bayes model for the lower-
dimensional approximations in Kim and Gu (2004). For 1 = 150 + 17, assume that 77o(x) = ¥7 ¢(x) with
¥ ~ N(0,7%I) and , has Gaussian prior with the covariance function

[mGxm(x2)] = bR, (x,u”) Q"R (u, x)),

where Q% is the Moore-Penrose inverse of Q = R;(u,u’). Let 7 — oo. Then the likelihood of (17,%)
is proportional to

1 -
exp {—% -5y (RQ'R") " (n~ Sy)} ,

where RO*RT has (i, j)th entry R(x;, u’)Q*R(u, x;) and Q% is the Moore-Penrose inverse of Q =
R;(u,u”). Integrating out v, the likelihood of 7 is

_ -1
q(n) o« exp {—2—1bnT (N_1 -Nls (STN_IS) 1STN_I) 77},

where N = RQ*R”. Also the likelihood p(Y}y) is proportional to

1 n
exp {—; > {Yarx) ~ log (1 + exp(r(xi) }} :

i=1
Then, the posterior likelihood for n given Y is

n

1
p(YIm)q(n) o< exp{ = =5 2, {¥in(x) ~ log(1 + exp((x))}
i=1

- inT (N‘l -Nls (STN-IS)‘l STN'I)_I .
2b

Now, we show that the posterior mode is equal to the solution to the penalized likelihood functional
(2.1). The lower-dimensional approximating solution 7 = Sd + Rc has ¢ and d minimizing

—% Z {Yi(¢id + &,¢) — log(1 + exp(¢;*d* + fic))} + gcTQc.
i=1

Taking derivatives with respect to ¢ and d and setting them to zero, one has

STu=0,
R™a +niQc =0,
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where v = =Y + exp(1)/{1 + exp(n)} = —Y + p. Differentiating log p(Y|)q(n) with respect to 77 and
letting #1 = ¢ /b, one obtain

v+ n,l{(N—l - NS (sTNIs) ST )(Sd + Rc)}

—v+nl {(N‘ch ~NIs (s TN-IS)'1 STN-ch)} -0

Therefore, the posterior mode of 1 given Y is equal to 77,. Calculating the quadratic approximation of
p(Y|n) at 7}, one has

p(XImq(m) o< p(YImq(),

where p(Y|n) is a quadratlc approximation of p(Y|p) at 7. In fact p(Y|np) is Gaussian with zero
mean and covariance a>W~! for pseudo-observations Y = fi— W9, where v = -Y+ pand W =
diag(wy, ..., w,) with w; = p;(1 + p;). Then the Bayes model of Kim and Gu (2004) with pseudo-
observations Y,, with variance c?W~! and M = RQ*R” + nAW~! can be applied directly to obtain the
approximate posterior mean and variance from penalized weighted least square functional in Kim and
Gu (2004) by replacing S by W'/2S, Rby W'/2R, Y by W'/2Y, and M by M = RQ*RT + naw~".

Appendix B: Proof of Theorem 2

To prove Theorem 2, it is enough to calculate the covariance of n(x;) and 7(x;) given Y. Following
the proof of Theorem 3.1 in Gu and Wahba (1993), one can obtain the covariance of 7(x,) and 7(x;) in
Gaussian case with the lower-dimensional approximation. Then the covariance of 7(x;) and 7(x,) in
logistic framework is an approximation of that in weighted Gaussian framework. For Y = 5+ ¢, where
E(e) = 0, E(en) = 0, E(qm") = bX,, and E(ee’) = o>W~!, assume that the random vectors g and &
follow Gaussian distribution with zero mean and covariances Zonr = bZgh, Zoqr = bZyg, Ly = bZyy,.
Then, the covariance between g and & given Y is cov(g, h]Y) = by — Zgy(Zyyy + n/U)‘lZ,,h). Let
g = n(X,) and k = 1(X;). Then,

Zgn = E@O)N(:) = b o (x,)' ¢ (%) + Ry (x,u") Q*Ry (w,x,)]

Zgp = E (n(x) (q(x0), ... x,))7) = b [p#x)7ST + R (x,,u") Q" (R, (w. xy)..... Ry(u, )|
Zop = b[pS(x) + (Ry(x1,w), ..., Ry(x,, w)) Q'R (0, x,)]

Ty +nAW ! =b[pSS” + RO'RT + nAW'| = b[pssT + M|.

Thus, simple algebra gives

SOOI~ x, [o1 57 (o557 + 1) o | i

- pb(x,)' ST (pSST + M) RO*R®)
~RSQ'R(pSS” + M) pS¢(x,)
+REQ'R®T ~R®QR (pSST + M) RO'RWY,
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where R(s) = (Ry(Xy,u1), ..., Ry(X;, u,)T. Applying following formulas in'Wahba (1983) produces
the results.

lim pI - pS7 (oS8T + M) Sp = (STM'S) "
p—)co

tim pS7 (pSS” + M) = (STM's) " ST
p—‘)OO
lim (oSST + M) =M™ - M7 (STMS) T STM

p—o0
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