• Title/Summary/Keyword: nonorientable surface

Search Result 3, Processing Time 0.016 seconds

A FINITE PRESENTATION FOR THE TWIST SUBGROUP OF THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE

  • Stukow, Michal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.601-614
    • /
    • 2016
  • Let $N_{g,s}$ denote the nonorientable surface of genus g with s boundary components. Recently Paris and Szepietowski [12] obtained an explicit finite presentation for the mapping class group $\mathcal{M}(N_{g,s})$ of the surface $N_{g,s}$, where $s{\in}\{0,1\}$ and g + s > 3. Following this work, we obtain a finite presentation for the subgroup $\mathcal{T}(N_{g,s})$ of $\mathcal{M}(N_{g,s})$ generated by Dehn twists.

REMARKS ON THE LIECHTI-STRENNER'S EXAMPLES HAVING SMALL DILATATIONS

  • Ham, Ji-Young;Lee, Joongul
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1299-1307
    • /
    • 2020
  • We show that the Liechti-Strenner's example for the closed nonorientable surface in [13] minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial of the action induced on the first cohomology nonpositive. We also show that the Liechti-Strenner's example of orientation-reversing homeomorphism for the closed orientable surface in [13] minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial p(x) of the action induced on the first cohomology nonpositive or all but the first coefficient of p(x)(x ± 1)2, p(x)(x2 ± 1), or p(x)(x2 ± x + 1) nonpositive.

CONVEX DECOMPOSITIONS OF REAL PROJECTIVE SURFACES. III : FOR CLOSED OR NONORIENTABLE SURFACES

  • Park, Suh-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1139-1171
    • /
    • 1996
  • The purpose of our research is to understand geometric and topological aspects of real projective structures on surfaces. A real projective surface is a differentiable surface with an atlas of charts to $RP^2$ such that transition functions are restrictions of projective automorphisms of $RP^2$. Since such an atlas lifts projective geometry on $RP^2$ to the surface locally and consistently, one can study the global projective geometry of surfaces.

  • PDF