Browse > Article
http://dx.doi.org/10.4134/BKMS.2016.53.2.601

A FINITE PRESENTATION FOR THE TWIST SUBGROUP OF THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE  

Stukow, Michal (Institute of Mathematics, University of Gdansk)
Publication Information
Bulletin of the Korean Mathematical Society / v.53, no.2, 2016 , pp. 601-614 More about this Journal
Abstract
Let $N_{g,s}$ denote the nonorientable surface of genus g with s boundary components. Recently Paris and Szepietowski [12] obtained an explicit finite presentation for the mapping class group $\mathcal{M}(N_{g,s})$ of the surface $N_{g,s}$, where $s{\in}\{0,1\}$ and g + s > 3. Following this work, we obtain a finite presentation for the subgroup $\mathcal{T}(N_{g,s})$ of $\mathcal{M}(N_{g,s})$ generated by Dehn twists.
Keywords
mapping class group; nonorientable surface; twist subgroup; presentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Birman, Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc. 21 (1969), no. 2, 351-354.   DOI
2 D. R. J. Chillingworth, A finite set of generators for the homeotopy group of a non-orientable surface, Math. Proc. Cambridge Philos. Soc. 65 (1969), 409-430.   DOI
3 S. Gervais, A finite presentation of the mapping class group of a punctured surface, Topology 40 (2001), no. 4, 703-725.   DOI
4 S. P. Humphries, Generators for the mapping class group, In Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), pp. 44-47, Lecture Notes in Math., 722, Springer, Berlin, 1979.
5 D. L. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), no. 1, 119-125.   DOI
6 M. Korkmaz, Mapping class groups of nonorientable surfaces, Geom. Dedicata 89 (2002), 109-133.
7 C. Labruere and L. Paris, Presentations for the punctured mapping class groups in terms of Artin groups, Algebr. Geom. Topol. 1 (2001), 73-114.   DOI
8 W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 (1962), 531-540.   DOI
9 W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Math. Proc. Cambridge Philos. Soc. 59 (1963), 307-317.   DOI
10 W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Math. Proc. Cambridge Philos. Soc. 60 (1964), 769-778.   DOI
11 M. Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), no. 3, 401-418.   DOI
12 L. Paris and B. Szepietowski, A presentation for the mapping class group of a nonori-entable surface, arXiv:1308.5856v1 [math.GT], 2013.
13 M. Stukow, The twist subgroup of the mapping class group of a nonorientable surface, Osaka J. Math. 46 (2009), no. 3, 717-738.
14 M. Stukow, Generating mapping class groups of nonorientable surfaces with boundary, Adv. Geom. 10 (2010), no. 2, 249-273.   DOI
15 B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), no. 2-3, 157-174.   DOI
16 M. Stukow, A finite presentation for the mapping class group of a nonorientable surface with Dehn twists and one crosscap slide as generators, J. Pure Appl. Algebra 218 (2014), no. 12, 2226-2239.   DOI