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A FINITE PRESENTATION FOR

THE TWIST SUBGROUP OF THE MAPPING CLASS

GROUP OF A NONORIENTABLE SURFACE

Micha l Stukow

Abstract. Let Ng,s denote the nonorientable surface of genus g with
s boundary components. Recently Paris and Szepietowski [12] obtained

an explicit finite presentation for the mapping class group M(Ng,s) of

the surface Ng,s, where s ∈ {0, 1} and g + s > 3. Following this work,
we obtain a finite presentation for the subgroup T (Ng,s) of M(Ng,s)

generated by Dehn twists.

1. Introduction

Let Ng,s be a smooth, nonorientable, compact surface of genus g with s
boundary components. If s is zero, then we omit it from the notation. If we do
not want to emphasise the numbers g, s, we simply write N for a surface Ng,s.
Recall that Ng is a connected sum of g projective planes and Ng,s is obtained
from Ng by removing s open disks.

Let Diff(N) be the group of all diffeomorphisms h : N → N such that h is
the identity on each boundary component. By M(N) we denote the quotient
group of Diff(N) by the subgroup consisting of maps isotopic to the identity,
where we assume that isotopies are the identity on each boundary component.
M(N) is called the mapping class group of N .

The mapping class group M(Sg,s) of an orientable surface is defined analo-
gously, but we consider only orientation preserving maps.

1.1. Background

One of the most important elements in mapping class groups of surfaces
are Dehn twists. They were discovered by Max Dehn, who first observed that
they generate the mapping class group M(Sg) of a closed oriented surface Sg.
Twists were rediscovered by Lickorish [8, 10], who also proved that M(Sg) is
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generated by 3g−1 Dehn twists about nonseparating circles. Later Humphries
reduced this generating set to 2g + 1 twists [4].

Since Dehn twists generate the mapping class groupM(Sg), it is natural to
ask about possible relations between them. Let us mention some results in this
direction. Birman [1] observed that there is a close relation between mapping
class group M(Sg) and the mapping class group of a punctured sphere, which
in fact is a quotient of the braid group B2g+2. This correspondence leads
to a number of interesting relations, for example: braid and chain relations,
relations with hyperelliptic involution, relations with elements of finite order.
Later Johnson [5] discovered the so-called lantern relation, which apparently
has been used by Dehn in 1920’s. It turned out that this set of relations was
enough to give a full presentation of M(Sg), which was obtained by Wajnryb
[16]. Later some other relations were discovered, for example star relations or
relations between fundamental elements in Artin groups embedded in M(Sg).
These relations led to some other interesting presentations of M(Sg) – see
[3, 11].

In the nonorientable case, Lickorish [9] first observed that Dehn twists do
not generate the mapping class group M(Ng) for g ≥ 2. More precisely, he
proved that Dehn twists generate the so-called twist subgroup T (Ng) which
is of index 2 in M(Ng). Later Chillingworth [2] found finite generating sets
for T (Ng) and M(Ng). These generating sets were extended to the case of a
surface with punctures and/or boundary components in [6, 13, 14].

As for relations, recently Paris and Szepietowski [12] obtained a finite pre-
sentations for groups M(Ng,s) where s ∈ {0, 1} and g + s > 3.

1.2. Main results

The main goal of this paper is to find a complete set of relations between
Dehn twists on a nonorientable surface N . To be more precise, we obtain a pre-
sentation for the twist subgroup T (Ng,s) of the mapping class groupM(Ng,s) of
a nonorientable surface (Theorems 3.1 and 3.2), where s ∈ {0, 1} and g+s > 3.
The obtained presentations may seem to be complicated, but many relations
are needed only for small genera and stably the presentations are quite simple.

Our starting point is the presentation of M(Ng,s) obtained by Paris and
Szepietowski [12], however their presentation has g − 1 generators which are
not elements of T (Ng,s), hence it leads to a very complicated presentation of the
twist subgroup. Therefore, we use a recent simplification of their presentation
[15], which has only one generator not belonging to T (Ng,s) (Theorems 2.1, 2.2
and 2.3).

2. Preliminaries

2.1. Notation

Let us represent surfaces Ng,0 and Ng,1 as respectively a sphere or a disc with
g crosscaps and let α1, . . . , αg−1, β be two-sided circles indicated in Figure 1.
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Small arrows in this figure indicate directions of Dehn twists a1, . . . , ag−1, b

Figure 1. Surface N as a sphere/disc with crosscaps.

associated with these circles. Observe that β (hence also b) is defined only if
g ≥ 4. From now on whenever we use b, we silently assume that g ≥ 4.

Moreover, for any unoriented one-sided circle µ and oriented two-sided circle
α which intersects µ in one point (Figure 2), we define a crosscap slide (or Y-
homeomorphism) Yµ,α, that is the effect of pushing µ along the curve α – for
precise definition see Section 2.2 of [12].

Figure 2. Crosscap slide.

In particular, let y = Yµ1,α1
, where µ1, α1 are curves indicated in Figure 3.

Figure 3. Circles µi and αi.

The following three theorems are the main results of [15].
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Theorem 2.1. If g ≥ 3 is odd or g = 4, then M(Ng,1) admits a presentation
with generators a1, . . . , ag−1, y and b for g ≥ 4. The defining relations are

(A1) aiaj = ajai for g ≥ 4, |i− j| > 1,
(A2) aiai+1ai = ai+1aiai+1 for i = 1, . . . , g − 2,
(A3) aib = bai for g ≥ 4, i 6= 4,
(A4) ba4b = a4ba4 for g ≥ 5,
(A5) (a2a3a4b)

10 = (a1a2a3a4b)
6 for g ≥ 5,

(A6) (a2a3a4a5a6b)
12 = (a1a2a3a4a5a6b)

9 for g ≥ 7,
(B1) y(a2a3a1a2ya

−1
2 a−1

1 a−1
3 a−1

2 ) = (a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 )y for g ≥ 4,
(B2) y(a2a1y

−1a−1
2 ya1a2)y = a1(a2a1y

−1a−1
2 ya1a2)a1,

(B3) aiy = yai for g ≥ 4, i = 3, 4, . . . , g − 1,
(B4) a2(ya2y

−1) = (ya2y
−1)a2,

(B5) ya1 = a−1
1 y,

(B6) byby−1 = [a1a2a3(y−1a2y)a−1
3 a−1

2 a−1
1 ][a−1

2 a−1
3 (ya2y

−1)a3a2] for g ≥ 4,
(B7) (a4a5a3a4a2a3a1a2ya

−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 )b
= b(a4a5a3a4a2a3a1a2ya

−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 ) for g ≥ 6,
(B8) [(ya−1

1 a−1
2 a−1

3 a−1
4 )b(a4a3a2a1y

−1)][(a−1
1 a−1

2 a−1
3 a−1

4 )b−1(a4a3a2a1)]
= [(a−1

4 a−1
3 a−1

2 )y(a2a3a4)][a−1
3 a−1

2 y−1a2a3][a−1
2 ya2]y−1 for g ≥ 5.

If g ≥ 6 is even, then M(Ng,1) admits a presentation with generators a1, . . .,
ag−1, y, b and additionally b0, b1, . . . , b g−2

2
. The defining relations are relations

(A1)–(A6), (B1)–(B8) above and additionally

(A7) b0 = a1, b1 = b,
(A8) bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)

5(bi−1a2ia2i+1a2i+2a2i+3)−6

for 1 ≤ i ≤ g−4
2 ,

(A9a) b2b = bb2 for g = 6,
(A9b) b g−2

2
ag−5 = ag−5b g−2

2
for g ≥ 8.

Theorem 2.2. If g ≥ 4, then the group M(Ng,0) is isomorphic to the quo-
tient of the group M(Ng,1) with presentation given in Theorem 2.1 obtained by
adding a generator % and relations

(C1a) (a1a2 · · · ag−1)g = % for g odd,
(C1b) (a1a2 · · · ag−1)g = 1 for g even,
(C21) %a1 = a1%,
(C3) %2 = 1,

(C4a) (y−1a2a3 · · · ag−1ya2a3 · · · ag−1)
g−1
2 = 1 for g odd,

(C4b) (y−1a2a3 · · · ag−1ya2a3 · · · ag−1)
g−2
2 y−1a2a3 · · · ag−1 = % for g even.

Theorem 2.3. Relations (C4a), (C4b) and (C21) in the presentation given by
Theorem 2.2 may be replaced by

(C2) %ai = ai% for i = 1, . . . , g − 1,
(C5) y% = %y−1,
(C4) (y%a2a3 · · · ag−1)g−1 = 1.
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3. Presentation for the twist subgroup

Recall that for s ≤ 1 and g ≥ 3 the twist subgroup T (Ng,s) has index
2 in M(Ng,s) (for details see [9, 13]), hence we can obtain its presentation
using Reidemeister–Schreier rewriting process. To be more precise, we define
a Schreier transversal U = {1, y} for T (Ng,s) in M(Ng,s) and for any h ∈
M(Ng,s) we define

h =

{
1 if h ∈ T (Ng,s),

y if h 6∈ T (Ng,s).

The Reidemeister–Schreier theorem states that T (Ng,s) admits a presentation
with generators uxux−1, where x is a generator ofM(Ng,s), u ∈ U and ux 6∈ U .
The set of defining relations consists of relations of the form uru−1, where u ∈ U
and r is a defining relation for M(Ng,s).

Theorem 3.1. If g ≥ 3 is odd or g = 4, then T (Ng,1) admits a presentation
with generators a1, . . . , ag−1, e, f, y

2 and b, c for g ≥ 4. The defining relations
are (A1)–(A6) and

(A11) eaj = aje for g ≥ 5, j ≥ 4,

(A12) faj = ajf for g ≥ 5, j ≥ 4,

(A21) a1ea1 = ea1e,
(A22) a−1

3 ea−1
3 = ea−1

3 e for g ≥ 4,

(A23) a1fa1 = fa1f ,
(A31) a1c = ca1 for g = 4, 5,
(A32) ec = ce for g = 4, 5,
(A4) ca4c = a4ca4 for g = 5, 6,
(A5) (e−1a3a4c)

10 = (a−1
1 e−1a3a4c)

6 for g = 5, 6,

(A6) (e−1a3a4a5a6c)
12 = (a−1

1 e−1a3a4a5a6c)
9 for g = 7, 8,

(B1) (a2a3a1a2ea1a
−1
3 e)(a2a3a1a2fa1a

−1
3 f) = 1 for g ≥ 4,

(B21) y2 = a2a1ea1a2a1a2a1a2fa1a2,
(B22) (a2a1ea1a2a1a2a1a2fa1a2)(a2a1fa1a2a1a2a1a2ea1a2) = 1,
(B3) y2a3 = a3y

2 for g ≥ 4,
(B41) ea2 = a2e,
(B42) fa2 = a2f ,
(B61) bc = [a1a2a3f

−1a−1
3 a−1

2 a−1
1 ][a−1

2 a−1
3 e−1a3a2] for g ≥ 4,

(B62) c(y2by−2) = [a−1
1 e−1a3a2a

−1
3 ea1][ea−1

3 (y2a2y
−2)a3e

−1] for g = 4, 5,

(B71) (a4a5a3a4a2a3a1a2ea1a
−1
3 ea−1

4 a−1
3 a−1

5 a−1
4 )c

= b(a4a5a3a4a2a3a1a2ea1a
−1
3 ea−1

4 a−1
3 a−1

5 a−1
4 ) for g ≥ 6,

(B72) (a−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 )b(a4a5a3a4a2a3a1a2)y2

= y2(a−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 )b(a4a5a3a4a2a3a1a2) for g ≥ 6,

(B81)
[
(a1ea

−1
3 a−1

4 )c(a4a3e
−1a−1

1 )
] [

(a−1
1 a−1

2 a−1
3 a−1

4 )b−1(a4a3a2a1)
]

= a−1
4

[
(a−1

3 a−1
2 e−1a3)a4(a−1

3 ea2a3)
]
a−1

2 e−1 for g ≥ 5,

(B82)
[
(a−1

1 a−1
2 a−1

3 a−1
4 )b(a4a3a2a1)

] [
(a1fa

−1
3 a−1

4 )y−2c−1y2(a4a3f
−1a−1

1 )
]

= a−1
4

[
(a−1

3 fa2a3)a4(a−1
3 a−1

2 f−1a3)
]
fa2 for g = 5, 6.
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If g ≥ 6 is even, then T (Ng,1) admits a presentation with generators a1, . . .,

ag−1, e, f, y2, b, c and additionally b0, b1, . . . , b g−2
2

, b g−6
2
, b g−4

2
, b g−2

2
. The defin-

ing relations are relations (A1)–(A9), (A11)–(A6), (B1)–(B82) and additionally

(A7a) b0 = a−1
1 , b1 = c for g = 6,

(A7b) b1 = c for g = 8,
(A7c) bi = zg−1biz

−1
g−1 where i = g−6

2 , g−4
2 , i ≥ 2 and

zg−1 = (ag−1agag−2ag−1 · · · a3a4e
−1a3a

−1
1 e−1)(a−1

2 a−1
1 · · · a

−1
g−1a

−1
g−2a

−1
g a−1

g−1),

(A8a) b2 = (b0e
−1a3a4a5b1)5(b0e

−1a3a4a5)−6 for g = 6,
(A8b) b g−2

2
= (b g−6

2
ag−4ag−3ag−2ag−1b g−4

2
)5(b g−6

2
ag−4ag−3ag−2ag−1)−6

for g ≥ 8,
(A9a) b2c = cb2 for g = 6,
(A9b) b g−2

2
ag−5 = ag−5b g−2

2
for g ≥ 8.

Proof. As noted before, we apply Reidemeister–Schreier theorem to the pre-
sentation given by Theorem 2.1. Hence as generators of the twist subgroup
T (Ng,1) we obtain a1, . . . , ag−1, ya1y

−1, . . . , yag−1y
−1, y2 and b, yby−1 for g ≥

4. Moreover, if g ≥ 6 is even, we have additional generators: b0, b1, . . . , b g−2
2

,

yb0y
−1, yb1y

−1, . . . , yb g−2
2
y−1. Let us name some of these generators:

e = ya−1
2 y−1, c = yby−1, bi = ybiy

−1 for i = 0, . . . ,
g − 2

2
.

We also add one generator f = y−1a−1
2 y with defining relation

(D1) f = y−2ey2

(see Figure 4).

Figure 4. Twists e, f, y2, c.

(B3) Observe first that relation (B3) rewrites as

yaiy
−1 = ai for i = 3, 4, . . . , g − 1.

This means that we can remove generators ya3y
−1, . . . , yag−1y

−1 from the
presentation, hence from now on we will silently identify yaiy

−1 with ai for
i = 3, 4, . . . , g − 1.

(B5) Similarly, (B5) allows us to identify ya1y
−1 with a−1

1 .
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Observe also that conjugations of (B3) and (B5) by y give

(B3) y2ai = aiy
2 for i = 1, 3, 4, . . . , g − 1.

We will show later that this relation can be replaced by (A12) if i 6= 3.
(A1)–(A9) Relations which do not contain y, that is (A1)–(A9) does not

need rewriting, however we need to add their versions conjugated by y. This
gives relations (A11), (A21), (A22), (A32), (A4)–(A6) and

(A31) aic = cai for g ≥ 4, i 6= 2, 4.

If g ≥ 6 is even, then we have additionally

(A7) b0 = a−1
1 , b1 = c,

(A8a) b2 = (b0e
−1a3a4a5b1)5(b0e

−1a3a4a5)−6,
(A8b) bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)

5(bi−1a2ia2i+1a2i+2a2i+3)−6

for 2 ≤ i ≤ g−4
2 ,

(A9a) b2c = cb2 for g = 6,
(A9b) b g−2

2
ag−5 = ag−5b g−2

2
for g ≥ 8.

(B4) Relation (B4) and its conjugation by y−1 rewrite respectively as (B41)
and (B42). It is also useful to note that relations (D1), (B3), (A21) and (A22)
imply that

(A23) a1fa1 = fa1f ,
(A24) a−1

3 fa−1
3 = fa−1

3 f for g ≥ 4.

(B2) Using (A2), (A21), (A22) and (B41) we rewrite (B2).

[y]
→

(a2a1y
−1a−1

2 [y]
→
a1a2)y = a1(a2a1y

−1a−1
2 ya1a2)a1,

[e−1a−1
1 a−1

2 a−1
1 e−1]

←
y2 = a1a2a1f [a1a2a1],

y2 = e[a1a2a1]ea1a2a1fa2a1a2,

y2 = [e]
→
a2a1a2[e]

←
a1a2a1fa2a1a2,

y2 = a2[ea1e]a2a1a2a1a2fa1a2,

y2 = a2a1ea1a2a1a2a1a2fa1a2.

In the above computations we introduced the notation which should help the
reader to follow our transformations. The underlined parts indicate expressions
which will be reduced, and parts with small arrows indicate expressions which
will be moved to the left/right.

As a conjugation of (B2) we can take

(a2a1y
−1a−1

2 ya1a2) = y−1a1(a2a1y
−1a−1

2 ya1a2)a1y
−1.

By a straightforward computation this gives

y−2 = a2a1fa1a2a1a2a1a2ea1a2,

which together with (B21) gives (B22).
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Observe that (B21) together with (A1) and (A11) imply that we can replace
(B3) for i ≥ 4 with (A12).

Observe also that (B21), (A2), (B41) and (B42) imply that (B3) for i = 1 is
superfluous.

We will now show that (D1) is superfluous – we will need here (A23), hence
we add this relation to the statement. Using (B21) we substitute for y2.

f = ([a−1
2 ]
←

a−1
1 f−1a−1

2 a−1
1 a−1

2 a−1
1 a−1

2 a−1
1 e−1a−1

1 a−1
2 )[e]
←

(a2a1e[a1]
→
a2a1a2a1a2fa1[a2]

→
),

f = (a−1
1 f−1a−1

2 a−1
1 a−1

2 a−1
1 a−1

2 e−1a−1
1 )(a1ea2a1a2a1a2fa1)f.

(B1) If we use (B1) in the form

(a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 )y−1 = y−1(a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 ),

after rewriting we get (B1). Conjugating this relation by y gives

(B12) y(a2a3a1a2[y]
←
a−1

2 a−1
1 a−1

3 a−1
2 )[y−2]

→
= (a2a3a1a2ya

−1
2 a−1

1 a−1
3 a−1

2 )[y−1]
←

,

y2(f−1a3a
−1
1 f−1a−1

2 a−1
1 a−1

3 a−1
2 ) = (a2a3a1a2ea1a

−1
3 e)y2.

Now we will show that this relation is superfluous – it is a consequence of rela-
tions (A1), (A2), (A21)–(A24), (B1), (B21), (B22), (B41), (B42). We substitute
for y2 using (B21) and (B22).

(a2a1ea1a2a1a2a1a2fa1a2)([f−1]
←

a3a
−1
1 f−1a−1

2 a−1
1 a−1

3 a−1
2 )

= (a2a3a1a2ea1a
−1
3 [e]
→

)(a−1
2 a−1

1 e−1a−1
1 a−1

2 a−1
1 a−1

2 a−1
1 a−1

2 f−1a−1
1 a−1

2 ),

(ea1a2[a1]
←

[a1]
→
a2fa1a2)(a3[a−1

1 ]
←

f−1a−1
2 a−1

3 )

= (a3a2e[a1]
→
a−1

3 )(a−1
2 a−1

1 e−1a−1
2 [a−1

1 ]
←

a−1
2 a−1

1 [a−1
2 ]
→

f−1),

([e]
←
a1a2fa1a2)(fa3f

−1a−1
2 a−1

3 )[a2]
←

= [a−1
2 ]
→

(a3a2ea
−1
3 )(e−1a−1

2 a−1
1 e−1a−1

2 a−1
1 [f−1]

→
),

(a1a2fa1a2)(a3[f−1]
→

[a−1
2 ]
←

a−1
3 f) = (e−1a3[a2]

→
[e]
←
a−1

3 )(a−1
2 a−1

1 e−1a−1
2 a−1

1 ),

a1a2fa1a
−1
3 [a2]
→
f [a3]
→

= [a−1
3 ]
←

e−1[a−1
2 ]
←

a3a
−1
1 e−1a−1

2 a−1
1 ,

a2a3a1a2fa1a
−1
3 f = e−1a3a

−1
1 e−1a−1

2 a−1
1 a−1

3 a−1
2 .

What we get is (B1).
(B6) If we rewrite (B6) we get (B61), and (B6) conjugated by y gives (B62).
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(B7) If we use (B7) in the form

a4a5a3a4a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 by−1

= ba4a5a3a4a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 y−1,

after rewriting we get (B71). By conjugating this relation by y−1, taking in-
verses of both sides and using (D1), we get

([a4a5a3a4a2a3a1a2]
←

fa1a
−1
3 fa−1

4 a−1
3 a−1

5 a−1
4 )[y−2]

←
cy2

= b(a4a5a3a4a2a3a1a2[fa1a
−1
3 fa−1

4 a−1
3 a−1

5 a−1
4 ]

→
),

y−2(ea1a
−1
3 ea−1

4 a−1
3 a−1

5 a−1
4 )c(a4a5a3a4e

−1a3a
−1
1 e−1)y2

= (a−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 )b(a4a5a3a4a2a3a1a2).

This together with (B71) gives (B72). For further reference observe that using
(B1) the above relation can be also rewritten as

(B73) (a4a5a3a4e
−1a3a

−1
1 e−1)(a−1

2 a−1
1 a−1

3 a−1
2 a−1

4 a−1
3 a−1

5 a−1
4 )y−2cy2

= b(a4a5a3a4e
−1a3a

−1
1 e−1)(a−1

2 a−1
1 a−1

3 a−1
2 a−1

4 a−1
3 a−1

5 a−1
4 ).

Observe that we can use (B71) and (B61) as definitions of c. It is straightfor-
ward to check that the first of these relations imply (A32) and (A31) for i = 1.
The second one imply (A31) for i = 3 and i ≥ 5.

(B8) If we rewrite (B8) we get (B81) and (B8) conjugated by y−1 gives
(B82).
Further reductions. For any 3 ≤ k ≤ g − 1 define

zk = (ak−1akak−2ak−1 · · · a3a4e
−1a3a

−1
1 e−1)(a−1

2 a−1
1 · · · a

−1
k−1a

−1
k−2a

−1
k a−1

k−1).

Geometrically zk is the product of crosscap slides yY ±1
µk,αk

, where µk and αk
are circles indicated in Figure 3 (see Section 4 of [15]), hence on the left of µk,
conjugation by zk has the same effect as conjugation by y. More precisely,

(D2) zka1z
−1
k = a−1

1 ,

(D3) zka2z
−1
k = e−1 for k ≥ 4,

(D4) zkaiz
−1
k = ai for 3 ≤ i ≤ k − 2,

(D5) zkbz
−1
k = c for k ≥ 5,

(D6) zky
2z−1
k = y2,

(D7) zkfz
−1
k = a−1

2 for k ≥ 4,

(D8) zkez
−1
k = y2a−1

2 y−2 for k ≥ 4,

(D9) zkcz
−1
k = y2by−2 for k ≥ 5.

Relations (D2)–(D4) are straightforward consequences of (A1), (A2), (A11),
(A21), (A22). For (D5) we need additionally (A3), (A31) and (B71).

Let us prove (D6) – we will use (A1), (A11), (B1), (B3) and (B12) (hence
we need all relations that we used to reduce (B12)).

zky
2 =(ak−1akak−2ak−1 · · · a3a4e

−1a3a
−1
1 e−1)(a−1

2 a−1
1 · · · a

−1
k−1a

−1
k−2a

−1
k a−1

k−1)y2
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= (ak−1ak · · · a3a4)[e−1a3a
−1
1 e−1a−1

2 a−1
1 a−1

3 a−1
2 ]y2(a−1

4 a−1
3 · · · a

−1
k a−1

k−1)

= (ak−1ak · · · a3a4)y2[e−1a3a
−1
1 e−1a−1

2 a−1
1 a−1

3 a−1
2 ](a−1

4 a−1
3 · · · a

−1
k a−1

k−1)

= y2zk.

Now we will prove (D7) – we will use (A1), (A2), (A12), (A24), (B1).

zkf= (ak−1ak · · · a4a5)a3a4[e−1a3a
−1
1 e−1a−1

2 a−1
1 a−1

3 a−1
2 ]a−1

4 a−1
3

(a−1
5 a−1

4 · · · a
−1
k a−1

k−1)f

= (ak−1ak · · · a4a5)a3a4[a2a3a1a2fa1a
−1
3 f ]a−1

4 a−1
3 [f ]
←

(a−1
5 a−1

4 · · · a
−1
k a−1

k−1)

= (ak−1ak · · · a4a5)a−1
2 a3a4[a2a3a1a2fa1a

−1
3 f ]a−1

4 a−1
3 (a−1

5 a−1
4 · · · a

−1
k a−1

k−1)

= a−1
2 (ak−1ak · · · a3a4)[e−1a3a

−1
1 e−1a−1

2 a−1
1 a−1

3 a−1
2 ](a−1

4 a−1
3 · · · a

−1
k a−1

k−1)

= a−1
2 zk.

Relation (D8) is a consequence of (D6), (D7) and (D1). Finally, (D9) is a
consequence of (B73) and (D6) (hence we need (B72)).

Relations (D2)–(D9) imply that

• (A4) is superfluous if g ≥ 7,
• (A5) is superfluous if g ≥ 7,
• (A6) is superfluous if g ≥ 9,
• (B62) is superfluous if g ≥ 6,
• (B82) is superfluous if g ≥ 7.

Moreover, if g ≥ 8, relations (A8a) and (A8b) for i < g−4
2 are consequences of

relation (A8). Hence we can remove all these relations together with generators
b0, . . . , b g−8

2
and instead add the relation

bi = zg−1biz
−1
g−1 for i =

g − 6

2
,
g − 4

2
.

This is exactly (A7c). �

Theorem 3.2. If g ≥ 5 is odd, then the group T (Ng,0) is isomorphic to the
quotient of the group T (Ng,1) with presentation given in Theorem 3.1 obtained
by adding a generator % and relations

(C1a) (a1a2 · · · ag−1)g = %,

(C1a) (a−1
1 e−1a3 · · · ag−1)g = y2%,

(C2) ai% = %ai for i = 1, 2, . . . , g − 1,
(C2) %e = f%,
(C5) %y2 = y−2%,
(C3) %2 = 1,

(C4a) (a2a3 · · · ag−1e
−1a3 · · · ag−1)

g−1
2 = 1.

Moreover, relations (A12), (B22), (B42) are superfluous.
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If g ≥ 4 is even, then the group T (Ng,0) is isomorphic to the quotient of
the group T (Ng,1) with presentation given in Theorem 3.1 obtained by adding
a generator % and relations

(C1b) (a1a2 · · · ag−1)g = 1,

(C21) %a1 = a−1
1 %,

(C22) %ai = ai% for i = 3, . . . , g − 1,
(C23) %a2 = e−1%,
(C5) %y2 = y−2%,
(C3) %2 = 1,
(C4) (%a2a3 · · · ag−1)g−1 = 1.

Moreover, relations (A11), (A21), (A22) are superfluous.

Proof. We follow the lines of the proof of Theorem 3.1, but as a starting point
we now have Theorem 2.2. Moreover, it is convenient to add relations (C2) and
(C5), so in particular (C4a) and (C4b) are equivalent to (C4) (see Theorem
2.3). Generator % yields two additional generators for T (Ng,0), namely %, y%y−1

if g is odd and % = y%, %y−1 if g is even.
Suppose first that g is odd. Then (C5) and its conjugate by y−1 rewrite as

y2% = y%y−1,

y2%y2 = %.

The first relation implies that we can remove generator y%y−1 – we will do this
silently from now on. The second one gives (C5).

Relations (C1a), (C2), (C3) does not need rewriting, and if we conjugate
them by y we get respectively (C1a), (C2) (we use here (D1), hence also (A23))
and relation equivalent to (C5).

Relation (C4a) and its conjugate by y rewrite respectively as

(f−1a3 · · · ag−1a2a3 · · · ag−1)
g−1
2 = 1,

(a2a3 · · · ag−1e
−1a3 · · · ag−1)

g−1
2 = 1.

The second relation is (C4a), and if we conjugate it by %, by (C2) and (C2) we
get the first one.

Finally, observe that if we conjugate relations (A11), (B21), (B41) by % we
get respectively (A12), (B22), (B42).

Now assume that g is even, hence % = y% ∈ T (Ng,0). Relation (C5) and its
conjugate by y rewrite as

y% = %y−1,

y2(y%) = (y%)y−2.

The first relation implies that we can remove generator %y−1 – we will do this
silently from now on. The second one gives (C5).

If we rewrite relation (C2) we get relations (C21)–(C23).
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Relations (C1b), (C3) and (C4) rewrite respectively as (C1b), (C3) and (C4).
Their conjugates by y±1 are superfluous since, by (C21)–(C23), they are the
same as conjugates by %.

Finally, observe that if we conjugate relations (A1), (A2) by % we get re-
spectively (A11), (A21)–(A22). �

Remark 3.3. Observe that relations (B21) and (C1a), (C4) allows to remove y2

and %, % from the generating sets, hence the generating sets of the presentations
given by Theorems 3.1 and 3.2 are really Dehn twists about nonseparating
circles.

4. Geometric interpretation

We devote this last section to the geometric interpretation of relations ob-
tained in Theorem 3.1.

Relations (A1), (A3), (A9a), (A9b), (A11), (A12), (A31), (A32), (B3), (B41),
(B42), (B72), (A9a), (A9b) are standard commutativity relations between Dehn
twists with disjoint supports.

Relations (A2), (A4), (A21)–(A23), (A4) are standard braid relations be-
tween Dehn twists about circles intersecting in one point.

Relations (A5), (A6), (A8), (A5), (A6), (A8a), (A8b) came from Mat-
sumoto [11] presentation of mapping class group of an orientable surface. They
have simple interpretation as relations between fundamental elements of Artin
groups – for details see [11] and [7].

Relations (B71) and (A7c) are simple conjugation relations of the form
tf(α) = ftαf

−1, where tα is the twist about a circle α.

Relations (B62) and (B82) are conjugates (by y±1) of (B61) and (B81) re-
spectively, and (B22) is equivalent to the conjugation of (B21), hence we are
left with four interesting relations: (B1), (B21), (B61) and (B81).

Relation (B1) can be rewritten in a slightly more symmetric form

(a2ea1)a−1
3 (a2ea1)a3(a2fa1)a−1

3 (a2fa1)a3 = 1.

This is a relation between five Dehn twists a1, a2, a3, e, f illustrated in Figures
1 and 4.

Relation (B21) can be rewritten as

y2 = (a2ea1)2(a2fa1)2.

This is a relation between five twists a1, a2, e, f, y
2 illustrated in Figures 1 and

4.
Relation (B61) is a relation between four Dehn twists

b, c, f ′ = (a1a2a3)f−1(a1a2a3)−1, e′ = (a3a2)−1e−1(a3a2),

illustrated in Figures 1, 4 and 5.
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Figure 5. Dehn twists e′ and f ′.

Finally, relation (B81) is a relation between six Dehn twists

c′ = (a1ea
−1
3 a−1

4 )c(a1ea
−1
3 a−1

4 )−1, b′ = (a4a3a2a1)−1b−1(a4a3a2a1),

a4, a
′ = (a−1

3 ea2a3)−1a4(a−1
3 ea2a3), a2, e.

illustrated in Figures 1, 4 and 6.

Figure 6. Dehn twists a′, b′ and c′.
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Wita Stwosza 57, 80-952 Gdańsk, Poland
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