DOI QR코드

DOI QR Code

REMARKS ON THE LIECHTI-STRENNER'S EXAMPLES HAVING SMALL DILATATIONS

  • Ham, Ji-Young (Department of Science Hongik University) ;
  • Lee, Joongul (Department of Mathematics Education Hongik University)
  • Received : 2019.10.16
  • Accepted : 2020.06.04
  • Published : 2020.10.31

Abstract

We show that the Liechti-Strenner's example for the closed nonorientable surface in [13] minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial of the action induced on the first cohomology nonpositive. We also show that the Liechti-Strenner's example of orientation-reversing homeomorphism for the closed orientable surface in [13] minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial p(x) of the action induced on the first cohomology nonpositive or all but the first coefficient of p(x)(x ± 1)2, p(x)(x2 ± 1), or p(x)(x2 ± x + 1) nonpositive.

Keywords

References

  1. J. W. Aaber and N. Dunfield, Closed surface bundles of least volume, Algebr. Geom. Topol. 10 (2010), no. 4, 2315-2342. https://doi.org/10.2140/agt.2010.10.2315
  2. W. Abikoff, The real analytic theory of Teichmuller space, Lecture Notes in Mathematics, 820, Springer, Berlin, 1980.
  3. P. Arnoux and J.-C. Yoccoz, Construction de diffeomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Ser. I Math. 292 (1981), no. 1, 75-78.
  4. M. Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992), no. 1, 361-370. https://doi.org/10.2307/2154169
  5. A. J. Casson and S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9, Cambridge University Press, Cambridge, 1988. https://doi.org/10.1017/CBO9780511623912
  6. J.-H. Cho and J.-Y. Ham, The minimal dilatation of a genus-two surface, Experiment. Math. 17 (2008), no. 3, 257-267. http://projecteuclid.org/euclid.em/1227121381 https://doi.org/10.1080/10586458.2008.10129045
  7. A. L. Dulmage and N. S. Mendelsohn, Graphs and matrices, in Graph Theory and Theoretical Physics, 167-227. (loose errata), Academic Press, London, 1967.
  8. E. Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom. Topol. 10 (2010), no. 4, 2041-2060. https://doi.org/10.2140/agt.2010.10.2041
  9. N. V. Ivanov, Stretching factors of pseudo-Anosov homeomorphisms, J. Soviet Math. 52 (1990), no. 1, 2819-2822; translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), Issled. Topol. 6, 111-116, 191. https://doi.org/10.1007/BF01099245
  10. E. Kin and M. Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, J. Math. Soc. Japan 65 (2013), no. 2, 411-446. http://projecteuclid.org/euclid.jmsj/1366896640 https://doi.org/10.2969/jmsj/06520411
  11. E. Lanneau and J.-L. Thiffeault, On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 1, 105-144. https://doi.org/10.5802/aif.2599
  12. C. J. Leininger, On groups generated by two positive multi-twists: Teichmuller curves and Lehmer's number, Geom. Topol. 8 (2004), 1301-1359. https://doi.org/10.2140/gt.2004.8.1301
  13. L. Liechti and B. Strenner, Minimal pseudo-Anosov stretch factors on nonorientable surfaces, arXiv:1806.00033, 2018, To appear in Algebr. Geom. Topol.
  14. R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), no. 2, 443-450. https://doi.org/10.2307/2048530
  15. W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431. https://doi.org/10.1090/S0273-0979-1988-15685-6
  16. A. Yu. Zhirov, On the minimum of the dilatation of pseudo-Anosov diffeomorphisms of a pretzel, Russian Math. Surveys 50 (1995), no. 1, 223-224; translated from Uspekhi Mat. Nauk 50 (1995), no. 1(301), 197-198. https://doi.org/10.1070/RM1995v050n01ABEH001680