• Title/Summary/Keyword: nonminimum phase

Search Result 79, Processing Time 0.059 seconds

Design of a robust controller for nonminimum phase system with structured uncertainty (구조적 불확실성을 갖는 비최소위상계의 강인한 제어기 설계)

  • 김신구;서광식;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.422-425
    • /
    • 1997
  • We consider the robust control problem for nonminimum phase(NMP) systems with parametric uncertainty which appear often in aircraft and missile control. First, a new method that makes such an uncertain NMP system to be factored as a interval minimum phase(MP) transfer function and a time delay term in the Pade approximation form has been presented. The controller to be proposed consists of a compensator $C_{Q}$(s) with Smith predictor in the internal model control(IMC) structure, so that it can have good robustness and performance against the structured uncertainty and the time delay behaviour due to NMP plant the $C_{Q}$(s) is designed on the MP model by using QFT. The stability and performance of overall system has been evaluated by the generalized Kharitonov theorem.rem.

  • PDF

Application of nonlinear control via output redefinition to missile autopilot (출력재정의를 통한 비선형제어 기법의 미사일 오토파일롯 응용)

  • 류진훈;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1496-1499
    • /
    • 1996
  • A nonlinear tracking control technique developed for the control of nonlinear systems has been applied to the autopilot design of missile system. The difficulties in the application of inversion based control methods such as input-output feedback linearization and sliding mode control due to nonminimum phase characteristics are discussed. To avoid the stability problem associated with unstable zero dynamics, the input-output feedback linearization is applied with output-redefinition method to normal acceleration control. The output-redefinition method gives an indirect way to apply the nonlinear controls to nonminimum phase plants by redefining the plant output such that the tracking control of the modified output ensures the asymptotic tracking of the original output. The numerical simulation shows satisfactory results both for nominal and for slightly perturbed missile systems adopting the sliding mode control technique. However, the robustness problem in this method is briefly investigated and verified with the simulation.

  • PDF

Feedforward Input Signal Generation for MIMO Nonminimum Phase Autonomous System Using Iterative Learning Method (반복학습에 의한 MIMO Nonminimum Phase 자율주행 System의 Feedforward 입력신호 생성에 관한 연구)

  • Kim, Kyongsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.204-210
    • /
    • 2018
  • As the 4th industrial revolution and artificial intelligence technology develop, it is expected that there will be a revolutionary changes in the security robot. However, artificial intelligence system requires enormous hardwares for tremendous computing loads, and there are many challenges that need to be addressed more technologically. This paper introduces precise tracking control technique of autonomous system that need to move repetitive paths for security purpose. The input feedforward signal is generated by using the inverse based iterative learning control theory for the 2 input 2 output nonminimum-phase system which was difficult to overcome by the conventional feedback control system. The simulation results of the input signal generation and precision tracking of given path corresponding to the repetition rate of extreme, such as bandwidth of the system, shows the efficacy of suggested techniques and possibility to be used in military security purposes.

A Modified LQG/LTR Method for Nonminimum Phase Systems (비최소위상 시스템을 위한 수정된 LQG/LTR 방법)

  • Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.279-281
    • /
    • 1992
  • In this paper, an LQG/LTR procedure for stable nonminimum phase systems is suggested using predictor scheme. In the method, the performance of the target feedback loop can be easily adjusted and the recovery error is less dependent on the location of NMP zeros than previous methods. The gain and phase margin and the robust ness for modeluncertainty of the suggested control system are obtained.

  • PDF

A method of robust stabilization of the interval plants with a PID controller (PID 제어기를 갖는 구간 플랜트의 강인안정화 기법)

  • 강환일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.52-58
    • /
    • 1997
  • In this paper, we consider methods of robust stabilization of the interval plant with a PID controller. Suppose that we know apriori a sign of the coefficients of the numerator of the PID controller. Under this condition, it sufficies to make eight polynomials stable for robust stabilization of the interval plant with a minimum phase PID controller. In addition, with a nonminimum phase PID controller, it suffices to make different eight polynomials stable. Especially, with the nonminimum phase PID controller it is shown that stabilization of eight plants is necessary and sufficient for robust stabilization of the interval plants.

  • PDF

Model reference adaptive control of missiles with nonminimum-phase characteristics (비최소 위상 특성을 갖는 유도탄의 기준 모델 적응 제어)

  • 송찬호;김승환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.418-423
    • /
    • 1992
  • In this paper, a model reference adaptive control algorithm is applied to the design of the normal acceleration controller for missiles with nonminimum-phase characteristics. The method used in this paper is due to Ohkubo. In this scheme, a feedforward compensator is designed first so that the extended system becomes minimum-phase and after that an adaptive control algorithms is designed for the extended system. The feedforwrd compensator is obtained by solving the robust stabilization problem. It is shown that the performance of the designed controller is satisfied via computer simulation.

  • PDF

PID CONTROLLOR TUNING USING CDM WITH SYSTEM INCLUDING NONMINIMOM PHASE (비최소 위상이 있는 시스템에서 CDM을 사용하여 PID제어기 동조)

  • Song, Jae-Hun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.100-103
    • /
    • 2002
  • This paper proposes the new PID controller tuning Method for nonminimum phase plant by using CDM. The proposed method effectively handles with the problem of overshoot in the nonminimum phase plant occuring by the previous Z-N method and it proposes the PID controller tuning method with CDM, when failing to find critical gain in PID controller tuning using Z-N method

  • PDF

Generalized Minimum Variance Self-tuning Control of Offset Using Incremental Estimator (증분형 추정기를 사용한 오프세트의 일반화 최소분산형 자기동조제어)

  • 박정일;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.372-378
    • /
    • 1988
  • The elimination of offsets such as those induced by load disturbance is a principal requirement in the control of industrial processes. In this paper we propose a self-tuning minimum variance control in the two tuypes of k-incremental and integrating form. Since the objective of control design in this paper is a generalized minimum variance control, it can be applied to nonminimum phase system. And we compare the proposed algorithm wiht that of the positional self-tuning control and show that it can also be applied to nonminimum phase system by computer simulation.

  • PDF

Direct Adaptive Control of Nonminimum Phase Systems Using Novel Estimation Algorithm (새로운 추정 알고리즘을 이용한 비최소 위상 시스템의 직접 적응 제어)

  • Lee, Seon-Woo;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.377-380
    • /
    • 1992
  • This paper proposes a novel direct adaptive pole placement control algorithm which can be applied to continuous time nonminimum phase systems. The algorithm is based on Lyapunov's direct method. By introducing an auxiliary signal, a minimal error model is constructed in state space. Using the error model an estimation law is obtained via Lyapunov's second stability theorem. The global stability of the overall system is established.

  • PDF

A Nash Solution to Predictive Control Problem for a Class of Nonlinear Systems

  • Ahn, Choon-Ki;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.76.5-76
    • /
    • 2002
  • In this paper, we provide a Nash solution to predictive control problem for nonminimum phase singular nonlinear systems. Until now, there is no result on predictive control problem for this class of nonlinear systems. Chen's recent work considered predictive control problem for a class of nonlinear systems with ill-defined relative degree. Since his work is not a result considered in the feedback linearization framework, there is no a result on singular probem in his paper. In contrast to the existing predictive control result, our work considers two main obstacles (singularity and nonminimum phase) in the feedback linearization framework. For a generally formu...

  • PDF