• Title/Summary/Keyword: nonlocal effects

Search Result 284, Processing Time 0.027 seconds

Dynamic modeling of embedded curved nanobeams incorporating surface effects

  • Ebrahimi, Farzad;Daman, Mohsen
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.255-267
    • /
    • 2016
  • To investigate the surface effects on vibration of embedded circular curved nanosize beams, nonlocal elasticity model is used in combination with surface properties including surface elasticity, surface tension and surface density for modeling the nano scale effect. The governing equations are determined via the energy method. Analytically Navier method is utilized to solve the governing equations for simply supported at both ends. Solving these equations enables us to estimate the natural frequency for circular curved nanobeam including Winkler and Pasternak elastic foundations. The results determined are verified by comparing the results by available ones in literature. The effects of various parameters such as nonlocal parameter, surface properties, Winkler and Pasternak elastic foundations and opening angle of circular curved nanobeam on the natural frequency are successfully studied. The results reveal that the natural frequency of circular curved nanobeam is significantly influenced by these effects.

Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions

  • Ebrahimi, Farzad;Kokaba, Mohammadreza;Shaghaghi, Gholamreza;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.169-182
    • /
    • 2020
  • This study presents the hygro-thermo-electromagnetic mechanical vibration attributes of elastically restrained piezoelectric nanobeam considering effects of beam surface for various elastic non-ideal boundary conditions. The nonlocal Eringen theory besides the surface effects containing surface stress, surface elasticity and surface density are employed to incorporate size-dependent effects in the whole of the model and the corresponding governing equations are derived using Hamilton principle. The natural frequencies are derived with the help of differential transformation method (DTM) as a semi-analytical-numerical method. Some validations are presented between differential transform method results and peer-reviewed literature to show the accuracy and the convergence of this method. Finally, the effects of spring constants, changing nonlocal parameter, imposed electric potential, temperature rise, magnetic potential and moisture concentration are explored. These results can be beneficial to design nanostructures in diverse environments.

Biaxial Buckling Analysis of Magneto-Electro-Elastic(MEE) Nano Plates using the Nonlocal Elastic Theory (비국소 탄성이론을 이용한 자기-전기-탄성 나노 판의 2방향 좌굴 해석)

  • Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.405-413
    • /
    • 2017
  • In this paper, we study the biaxial buckling analysis of nonlocal MEE(magneto-electro-elastic) nano plates based on the first-order shear deformation theory. The in-plane electric and magnetic fields can be ignored for MEE(magneto-electro-elastic) nano plates. According to magneto-electric boundary condition and Maxwell equation, the variation of magnetic and electric potentials along the thickness direction of the MME plate is determined. In order to reformulate the elastic theory of MEE(magneto-electro-elastic) nano-plate, the nonlocal differential constitutive relations of Eringen is used. Using the variational principle, the governing equations of the nonlocal theory are discussed. The relations between nonlocal and local theories are investigated by computational results. Also, the effects of nonlocal parameters, in-plane load directions, and aspect ratio on structural responses are studied. Computational results show the effects of the electric and magnetic potentials. These computational results can be useful in the design and analysis of advanced structures constructed from MEE(magneto-electro-elastic) materials and may be the benchmark test for the future study.

On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model

  • Belkorissat, Ismahene;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1063-1081
    • /
    • 2015
  • In this paper, a new nonlocal hyperbolic refined plate model is presented for free vibration properties of functionally graded (FG) plates. This nonlocal nano-plate model incorporates the length scale parameter which can capture the small scale effect. The displacement field of the present theory is chosen based on a hyperbolic variation in the in-plane displacements through the thickness of the nano-plate. By dividing the transverse displacement into the bending and shear parts, the number of unknowns and equations of motion of the present theory is reduced, significantly facilitating structural analysis. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG nano-plate are computed using Mori-Tanaka homogenization scheme. The governing equations of motion are derived based on the nonlocal differential constitutive relations of Eringen in conjunction with the refined four variable plate theory via Hamilton's principle. Analytical solution for the simply supported FG nano-plates is obtained to verify the theory by comparing its results with other available solutions in the open literature. The effects of nonlocal parameter, the plate thickness, the plate aspect ratio, and various material compositions on the dynamic response of the FG nano-plate are discussed.

Application of computer algorithms for modelling and numerical solution of dynamic bending

  • Jianzhong, Qiu;Naichang, Dai;Akbar Shafiei, Alavijeh
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.143-152
    • /
    • 2023
  • In this paper, static and dynamic bending of nanocomposite micro beam armed with CNTs considering agglomeration effect is studied. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The micro beam is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the static and dynamic deflections are decreased. In addition, enhancing the nonlocal parameter yields to higher static and dynamic deflections.

ON AN EQUATION CONNECTED WITH THE THEORY FOR SPREADING OF ACOUSTIC WAVE

  • Zikirov, O.S.
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the paper, we study questions on classical solvability of nonlocal problems for a third-order linear hyperbolic equation in a rectangular domain. The Riemann method is applied to the Goursat problem and solution is obtained in the integral form. Investigated problems are reduced to the uniquely solvable Volterra-type equation of second kind. Influence effects of coefficients at lowest derivatives on correctness of studied problems are detected.

TRAFFIC FLOW MODELS WITH NONLOCAL LOOKING AHEAD-BEHIND DYNAMICS

  • Lee, Yongki
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.987-1004
    • /
    • 2020
  • Motivated by the traffic flow model with Arrhenius looka-head relaxation dynamics introduced in [25], this paper proposes a traffic flow model with look ahead relaxation-behind intensification by inserting look behind intensification dynamics to the flux. Finite time shock formation conditions in the proposed model with various types of interaction potentials are identified. Several numerical experiments are performed in order to demonstrate the performance of the modified model. It is observed that, comparing to other well-known macroscopic traffic flow models, the model equipped with look ahead relaxation-behind intensification has both enhanced dispersive and smoothing effects.

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation

  • Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.287-302
    • /
    • 2020
  • This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.