Browse > Article
http://dx.doi.org/10.12989/csm.2016.5.3.255

Dynamic modeling of embedded curved nanobeams incorporating surface effects  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Daman, Mohsen (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Publication Information
Coupled systems mechanics / v.5, no.3, 2016 , pp. 255-267 More about this Journal
Abstract
To investigate the surface effects on vibration of embedded circular curved nanosize beams, nonlocal elasticity model is used in combination with surface properties including surface elasticity, surface tension and surface density for modeling the nano scale effect. The governing equations are determined via the energy method. Analytically Navier method is utilized to solve the governing equations for simply supported at both ends. Solving these equations enables us to estimate the natural frequency for circular curved nanobeam including Winkler and Pasternak elastic foundations. The results determined are verified by comparing the results by available ones in literature. The effects of various parameters such as nonlocal parameter, surface properties, Winkler and Pasternak elastic foundations and opening angle of circular curved nanobeam on the natural frequency are successfully studied. The results reveal that the natural frequency of circular curved nanobeam is significantly influenced by these effects.
Keywords
vibration; curved nanobeam; surface effects; elastic foundation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Mohammadi, H., Mahzoon, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlin. Dyn., 76(4), 2005-2016.   DOI
2 Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514.   DOI
3 Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 1-16.
4 Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart sizedependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14.   DOI
5 Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
6 Ebrahimi, F. and Barati, M.R. (2016p), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", J. Smart Nano Mater., 7(2), 1-22.   DOI
7 Ebrahimi, F. and Barati, M.R. (2016q), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 1-13.
8 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccan., 51(4), 951-977.   DOI
9 Fallah, A. and Aghdam, M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech.-A/Solids, 30(4), 571-583.   DOI
10 Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B: Eng., 42(4), 934-937.   DOI
11 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", J. Solids Struct., 14(6), 431-440.   DOI
12 Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206.   DOI
13 Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V. and Wang, Z. (2010), "External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor", Adv. Mater., 22(45), 5134-5139.   DOI
14 Intarit, P., Senjuntichai, T., Rungamornrat, J. and Rajapakse, R.K.N.D. (2011), "Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic layer", Interact. Multi. Mech., 4(2), 85-105.   DOI
15 Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014.   DOI
16 Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intelli. Mater. Syst. Struct., 1045389X16672569.
17 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182.   DOI
18 Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magnetoelectro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293.
19 Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625.   DOI
20 Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690.   DOI
21 Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279.   DOI
22 Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
23 Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792.   DOI
24 Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", J. Eng. Sci., 107, 183-196.   DOI
25 Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.
26 Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19.   DOI
27 Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182.   DOI
28 Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015a), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215.   DOI
29 Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016a), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200.   DOI
30 Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2015b), "A semi-analytical evaluation of surface and nonlocal effects on buckling and vibrational characteristics of nanotubes with various boundary conditions", J. Struct. Stabil. Dyn., 1550023.
31 Ebrahimi, F. and Boreiry, M. (2015), "Investigating various surface effects on nonlocal vibrational behavior of nanobeams", Appl. Phys. A, 121(3), 1305-1316.   DOI
32 Ebrahimi, F. and Salari, E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169.   DOI
33 Ebrahimi, F. and Salari, E. (2015c), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut., 113, 29-50.   DOI
34 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015b), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and nonlinear temperature distributions", J. Therm. Stress., 38(12), 1360-1386.   DOI
35 Ebrahimi, F. and Barati, M.R. (2016o), "An exact solution for buckling analysis of embedded piezoelectromagnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84.   DOI
36 Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R. and Sahmani, S. (2014), "On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory", Compos. Part B: Eng., 60, 158-166.   DOI
37 Assadi, A. and Farshi, B. (2011), "Size dependent vibration of curved nanobeams and rings including surface energies", Phys. E: Low-dimens. Syst. Nanostruct., 43(4), 975-978.   DOI
38 Civalek, O. and Ozturk, B. (2010), "Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation", Geomech. Eng., 2(1), 45-56.   DOI
39 Daulton, T.L., Bondi, K.S. and Kelton, K.F. (2010), "Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials-application to Al 88- x Y 7 Fe 5 Ti x metallic glasses", Ultramicros., 110(10), 1279-1289.   DOI
40 Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420.   DOI
41 Ebrahimi, F. and Rastgoo, A. (2011), "Nonlinear vibration analysis of piezo-thermo-electrically actuated functionally graded circular plates", Arch. Appl. Mech., 81(3), 361-383.   DOI
42 Jang, T.S., Baek, H.S. and Paik, J.K. (2011), "A new method for the non-linear deflection analysis of an infinite beam resting on a non-linear elastic foundation", J. Non-lin. Mech., 46(1), 339-346.   DOI
43 Ebrahimi, F. and Rastgoo, A. (2009), "Nonlinear vibration of smart circular functionally graded plates coupled with piezoelectric layers", J. Mech. Mater. Des., 5(2), 157-165.   DOI
44 Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", J. Smart Nano Mater., 7(3), 1-25.   DOI
45 Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 1077546316646239.
46 Ebrahimi, F. and Barati, M.R. (2016c). "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910.   DOI
47 Nazemnezhad, R., Salimi, M., Hashemi, S.H. and Sharabiani, P.A. (2012), "An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects", Compos. Part B: Eng., 43(8), 2893-2897.   DOI
48 Pradhan, S. and Reddy, G. (2011), "Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM", Comput. Mater. Sci., 50(3), 1052-1056.   DOI
49 Pradhan, S.C. and Phadikar, J.K. (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33(2), 193-213.   DOI
50 Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
51 Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015), "On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects", Compos. Struct., 121, 377-385.   DOI
52 Kananipour, H., Ahmadi, M. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Lat. Am. J. Solids Struct., 11(5), 848-853.   DOI
53 Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047.   DOI
54 Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283.
55 Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92.   DOI
56 Sahmani, S., Bahrami, M. and Ansari, R. (2014), "Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams", Compos. Struct., 116, 552-561.   DOI
57 Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586.   DOI
58 Şimşek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628.   DOI
59 Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", J. Eng. Sci., 52, 56-64.   DOI
60 Niknam, H. and Aghdam, M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462.   DOI
61 Wang, C.M. and Duan, W. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104(1), 014303.   DOI
62 Zhao, T., Luo, J. and Xiao, Z. (2015), "Buckling analysis of a nanowire lying on Winkler-Pasternak elastic foundation", Mech. Adv. Mater. Struct., 22(5), 394-401.   DOI
63 Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380.
64 Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44(36), 365301.   DOI