1 |
S. A. Arrhenius, Uber die Dissociationswarme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte, Z. Phys. Chem. 4 (1889), 96-116.
DOI
|
2 |
F. Betancourt, R. Burger, K. H. Karlsen, and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity 24 (2011), no. 3, 855-885. https://doi.org/10.1088/0951-7715/24/3/008
DOI
|
3 |
M. Burger, Y. Dolak-Struss, and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci. 6 (2008), no. 1, 1-28. http://projecteuclid.org/euclid.cms/1204905775
DOI
|
4 |
F. A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 1, 163-180. https://doi.org/10.1051/m2an/2017066
DOI
|
5 |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998), no. 2, 229-243. https://doi.org/10.1007/BF02392586
DOI
|
6 |
Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity, SIAM J. Appl. Math. 66 (2005), no. 1, 286-308. https://doi.org/10.1137/040612841
DOI
|
7 |
S. Engelberg, H. Liu, and E. Tadmor, Critical thresholds in Euler-Poisson equations, Indiana Univ. Math. J. 50 (2001), Special Issue, 109-157. https://doi.org/10.1512/iumj.2001.50.2177
DOI
|
8 |
P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media 11 (2016), no. 1, 107-121. https://doi.org/10.3934/nhm.2016.11.107
DOI
|
9 |
D. D. Holm and A. N. W. Hone, A class of equations with peakon and pulson solutions, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 380-394. https://doi.org/10.2991/jnmp. 2005.12.s1.31
DOI
|
10 |
J. K. Hunter, Numerical solutions of some nonlinear dispersive wave equations, in Computational solution of nonlinear systems of equations (Fort Collins, CO, 1988), 301-316, Lectures in Appl. Math., 26, Amer. Math. Soc., Providence, RI, 1990.
|
11 |
A. Keimer and L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations 263 (2017), no. 7, 4023-4069. https://doi.org/10.1016/j.jde.2017.05.015
DOI
|
12 |
A. Keimer, L. Pflug, and M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal. 50 (2018), no. 6, 6271-6306. https://doi.org/10.1137/18M119817X
DOI
|
13 |
A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media 4 (2009), no. 3, 431-451. https://doi.org/10.3934/nhm.2009.4.431
DOI
|
14 |
G. Kynch, A theory of sedimentation, Trans. Fraday Soc, 48 (1952), 66-76.
|
15 |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A 229 (1955), 317-345. https://doi.org/10.1098/rspa.1955.0089
|
16 |
Y. Lee and H. Liu, Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics, Discrete Contin. Dyn. Syst. 35 (2015), no. 1, 323-339. https://doi.org/10.3934/dcds.2015.35.323
DOI
|
17 |
D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Netw. Heterog. Media 6 (2011), no. 4, 681-694. https://doi.org/10.3934/nhm.2011.6.681
DOI
|
18 |
T. Li and H. Liu, Critical thresholds in hyperbolic relaxation systems, J. Differential Equations 247 (2009), no. 1, 33-48. https://doi.org/10.1016/j.jde.2009.03.032
DOI
|
19 |
H. Liu and E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows, Comm. Math. Phys. 228 (2002), no. 3, 435-466. https://doi.org/10.1007/s002200200667
DOI
|
20 |
H. Liu, Wave breaking in a class of nonlocal dispersive wave equations, J. Nonlinear Math. Phys. 13 (2006), no. 3, 441-466. https://doi.org/10.2991/jnmp.2006.13.3.8
DOI
|
21 |
P. I. Richards, Shock waves on the highway, Operations Res. 4 (1956), 42-51. https://doi.org/10.1287/opre.4.1.42
DOI
|
22 |
J. Rubinstein, Evolution equations for stratified dilute suspensions, Phys. Fluids A 2 (1990), no. 1, 3-6. https://doi.org/10.1063/1.857690
DOI
|
23 |
J. Rubinstein and J. B. Keller, Sedimentation of a dilute suspension, Phys. Fluids A 1 (1989), no. 4, 637-643. https://doi.org/10.1063/1.857438
DOI
|
24 |
R. Seliger, A note on the breaking of waves, Proc. Roy. Soc. Ser. A, 303 (1968), 493-496.
|
25 |
A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math. 66 (2006), no. 3, 921-944. https://doi.org/10.1137/040617790
DOI
|
26 |
K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Quart. Appl. Math. 57 (1999), no. 3, 573-600. https://doi.org/10.1090/qam/1704419
DOI
|
27 |
E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014), no. 2028, 20130401, 22 pp. https://doi.org/10.1098/rsta.2013.0401
|
28 |
V. O. Vakhnenko and E. J. Parkes, The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos Solitons Fractals 13 (2002), no. 9, 1819-1826. https://doi.org/10.1016/S0960-0779(01)00200-4
DOI
|
29 |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.
|