• Title/Summary/Keyword: nonlinear wave

Search Result 951, Processing Time 0.032 seconds

Study of Nonlinear Wave Diffraction Using the 2-Dimensional Numerical Wave Tank (2차원 수치 파수조를 이용한 비선형파 산란의 연구)

  • 김용직
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.9-18
    • /
    • 1993
  • Numerical wave tank is a robust tool by which the nonlinear interactions between the body and the free-surface can be treated in time-domain. In this paper, a two-dimensional numerical wave tank based on the Spectral/Boundary-Element Method is developed, and applied successfully to the study of nonlinear wave diffraction around a submerged circular cylinder. Particularly, it is shown that the high-order wave components of significant wave height are developed in the lee-side of the cylinder and that these waves result in a negative drift force on the circular cylider.

  • PDF

On Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank

  • Koo, Weon-Cheol;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank (NWT). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWT, physical characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression, are simulated for the early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a systematic sensitivity analysis. In particular, the fully nonlinear NWT results are compared with linear results (exact body-boundary conditions with linear free-surface conditions) to identify the nonlinear effects in the respective cases.

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

  • Kim, No-Hyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.582-590
    • /
    • 2007
  • Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness.

Measurement of Nonlinear Elastic Constants and Material Characterization by Using Nonlinear Elasto-acoustics (비선형 탄성-음향 효과를 이용한 비선형 탄성 계수의 계측과 금속재료의 특성평가)

  • ;;Sato, Takuso
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1971-1979
    • /
    • 1993
  • In this paper, a new method to estimate stress status in metal nondestructively by using nonlinear dependency of sound speed on stress is proposed. For the purpose, equivalent nonlinear elastic constants up to fourth-order are introduced and a new characteristic parameter given as a function of these constants is presented. And a concrete system to measure the characteristic parameter is constructed by electromagnetic pumping wave and ultrasonic probing wave system. Some experimental results for Al alloy showed that the estimation of stress status in metal is possible by the proposed method.

Nonlinear Uplift Wave Pressure Distribution Acting on the Caisson of Composite Breakwater (혼성방파제의 케이슨에 작용하는 비선형양압력분포에 관한 연구)

  • 김도삼;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.20-27
    • /
    • 2001
  • Recently numerical approaches for wave loads acting on the vertical caisson of breakwater, and resulting wave reflection and transmission coefficients have been performed. Although the numerical studies by Sulisz's(1997) and Kim et al.(2000) are suggested representatively, theoretical formulation for nonlinear wave pressure is not developed yet. And experimental results of Sulisz(1997) revealed that nonlinear uplift pressure on the caisson may be produced largely on the case of caisson founded on the high rubble mound. From the results of this study, the nonlinear theory for the uplift wave pressure acting on the caisson by applying boundary integral method of Green theorem is formulated, and also the characteristics of nonlinear uplift pressure and run-up height on the caisson are evaluated numerically, according to the variations of hydraulic properties of the rubble mound.

  • PDF

Nonlinear Response Characteristics of the ISSC TLP in Time Domain (시간영역에서 ISSC TLP의 비선형 응답 특성)

  • Lee, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.30-35
    • /
    • 2006
  • In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.

Spectra of nonlinear shallow water waves (비선형 천해파의 스펙트라)

  • Zahibo, Narcisse;Didenkulova, Ira;Pelinovsky, Efim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.355-360
    • /
    • 2007
  • The process of the nonlinear shallow water wave transformation in a basin of a constant depth is studied. Characteristics of the first breaking of the wave are analyzed in details. The Fourier spectrum and steepness of the nonlinear wave are calculated. It is shown that the spectral amplitudes can be expressed using the wave front steepness, which allows the practical estimations.

Peak Distribution of Nonlinear Random Waves of Finite Bandwidth (유한한 Spectral Bandwidth를 갖는 Nonlinear Random Waves의 추계학적 성질)

  • Cho, Yong-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.58-65
    • /
    • 1993
  • The theoretical treatment of statistical properties and distribution relevant to nonlinear random wave field of moderate bandwidth such as peak and trough of wave elevation is an overdue task hampered by the complicated form of nonlinear random waves. In this study, the extreme distribution of nonlinear random waves is derived based on the simplified version of Longuet-Higgins' wave model. It is shown that the band width of wave spectrum has a significant influence on these extreme distribution and the significant wave height is getting larger in an increasing manner as the nonlinearity is getting profound.

  • PDF

Linear and Nonlinear Wave Pressure Distributions Acting on Vertical Caisson of Large Size in 3-Dimensional Wave Fields (3차원파동장에 있어서 대형연직케이슨에 작용하는 선형 및 비선형의 파압분포특성에 관한 연구)

  • 김도삼;신동훈;이봉재
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.114-119
    • /
    • 2001
  • Goda formula (Goda, 1973) has been used in the determination of wave pressures acting on a large size caisson such as the pier of the cable stayed bridge at sea. Goda formula, however, is to evaluate the wave pressures acting the infinite vertical caisson of composite breakwater so that it can`t be applied to a large caisson with finite width and length because of diffraction effects. In the present study, three dimensional nonlinear frequence domain method based on perturbation method and boundary integral method is applied to the computation of the linear and nonlinear wave pressures acting on the front of a large size caisson under the variation of its width and length, and angle of incident wave. The numerical results are compared to Goda\`s ones, and then the characteristics of wave pressure distributions acting on a large size caisson are discussed.

  • PDF