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Peak Distribution of Nonlinear Random Waves
of Finite Bandwidth
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Abstract ] The theoretical treatment of statistical properties and distribution relevant to nonlinear
random wave field of moderate bandwidth such as peak and trough of wave elevation is an overdue
task hampered by the complicated form of nonlinear random waves. In this study, the extreme
distribution of nonlinear random waves is derived based on the simplified version of Longuet-Higgins’
wave model. It is shown that the band width of wave spectrum has a significant influence on these
extreme distribution and the significant wave height is getting larger in an increasing manner as
the nonlinearity is getting profound.
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1. INTRODUCTION

Past descriptions of statistical properties of wind
waves are mostly based on the assumption that wa-
ves are linear and Gaussian. Under mild wind con-
ditions, linear wave theory has been shown to be
a robust model in many cases. However, waves ge-
nerated by high winds are steep and nonlinear, and
wave-wave interaction may become important. Ano-
ther assumption which has on occasions been made

is that waves are narrow banded. Again, in mild -

seas, without considering contamination due to
swell, this assumption has been shown to be reaso-
nably accurate. In high seas, however, this assump-
tion may not be satisfactory. Ocean facilities are
designed against severe events in which case waves
are steep, and their frequency spectrum is not nece-
ssarily narrow. To improve wave model for these

circumstances, it is first of all necessary to relax
the requirement of narrow band assumption. Seco-
ndly, a nonlinear wave model must be established.
For waves of single frequency, nonlinear waves can
be described by the Stokes waves based on the as-
sumption that the slope of the wave is small and
perturbation technique can be used. For waves con-
sisting of many components, Longuet-Higgins (1963)
has used the perturbation technique to obtain an
expression for wave elevation to the second order
of approximation. Based on the expression, he used
the Gram-Charlier series to describe the probability
density function of wave elevation. It was shown
that the probability density function of wave eleva-
tion deviates from the Gaussian probability density
function as can be expected. This technique was
later extended by Jackson (1979) to give the joint
probability density function of wave elevation and
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wave slope. There are, however, certain shortcomi-
ngs; the use of the Gram-Charlier series gives nega-
tive probability density at high values of elevation
and slope, and the use of wave elevation given by
Longuet-Higgins (1963) to obtain properties of the
sea surface can be mathematically inconvenient.
Tayfun (1980) obtained an expression for nonlinear
wave elevation using the Stokes perturbation techni-
que for waves of narrow bandwidth. Later, Huang
et al. (1983) extended the method of Tayfun for nar-
row banded waves to the third order and obtained
expressions of the probability density function of
wave elevation, slope, as well as the joint probability
density function of wave elevation and slope
(Huang er al., 1983). The search for a way simpler
than that of Longuet-Higgines (1963) to describe
nonlinear waves of finite bandwidth was recently
carried out by Tung et al. (1989). Based on the stu-
dies of Tayfun (1980, 1983), Tung et al. (1989) pro-
posed a simple but accurate expression for second
order nonlinear wave elevation for waves of mode-
rate bandwidth.

With this wave model available, it is the intent
of this study to obtain, for second order nonlinear
waves, statistical properties such as the probability
density function of peaks, quantities that are of
great importance in the design of ocean structures.
In this study, our attention is centered on deep
water waves only.

2. REVIEW OF EXTREME DISTRIBU-
TION THEORY

It is known that for stationary random process
{() of arbitrary bandwidth, the probability density
function of peaks is

SEI=FACIN, m
where

E@=[ U, 0. 0 Bl

N[ [ e o 0

and the probability density function of troughs is
given by

SEI=ECIN, @
where

F@)= [ At 0. 0t ©

N=[" [T 0 o bt ©

In (2), (3), 4) and (5), f&(*,*, ) is the joint probabi-
lity density function of ¢ and ¢ and F/&) repre-
sents the mean number of occurrences per unit time
for which a peak of { takes the value between ,
and {,+d¢, and N, is the mean number of occurre-
nces of a peak of  per unit time regardless of mag-
nitude. To apply (1) and (4) to nonlinear random
waves, it is necessary to have the joint distribution
of ¢, ¢ and ¢ which in tum requires a nonlinear
wave model of finite bandwidth.

3. FINITE BAND APPROXIMATION

Longuet-Higgines (1963) gave a second order deep
water nonlinear Stokes wave model for random wa-
ves of arbitrary bandwidth. The expression for wave
elevation is given by

(= Za, 05)(,-+-—1 i

i=

i aaw; cos(+ )
j=1
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in which y=kyx—wi+e, k; is the wave number,
o=(gk)" is wave frequency, & is random phase
uniformly distributed over the interval (0, 2n) and
a; is the amplitude of the component wave. It is
obvious that straightforward use of (7) to obtain
the joint probability density function of § ¢ and
{ would be rather cumbersome. Tayfun (1986) exa-
mined (7) closely and showed that the third term
on the right hand side of (7) contains little energy
compared with the first two terms. Based on this
observation, Tung et al. (1989) elected to neglect the
third term altogether and obtained a nonlinear wave
model which is more convenient to use. Upon int-
roducing the following random processes

n= Z a;cos ¥ 8)

(Mo)‘”
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= (M’)“ g am;sin ©)
1
m=— e Z a0 COS (10)
S i agf sin (1n
T4 (M4)|7 & i Xi
! z a;sin (12)
ns= (M())I n i X

it was shown that the nondimensional nonlinear
wave elevation, {,, can be written as

& = Ymy)'”?
Mo \12 1
-
m 2

0

ey (13)
where M; and m; are the ith spectral moments of
the linear and nonlinear wave elevation, respectively
and e=(My)"*/g. For a monochromatic wave of am-
plitude a and frequency w, My=a’w*/2 so that e=
ak/2 is a small quantity. For the problem under
consideration, € will be used as a perturbation para-
meter.

4. JOINT DISTRIBUTION OF A NON-
LINEAR WAVE ELEVATION, ITS
FIRST AND SECOND DERIVATIVE

Our task is to obtain the joint distribution of no-
nlinear wave elevation, its first and second derivati-
ves to be used in (1) and (4). To this end, we carry
out the differentiation of nonlinear wave elevation
with respect to time twice. The resulting expressions
of the nondimensionalized first and second deriva-
tives of nonlinear wave elevation involve many ran-
dom variables. Although the joint distribution of
¢ € and & fz( ), may be obtained, the task is
tedious. To facilitate subsequent computation of fui
(+). we further introduce some assumptions based
on the analysis given by Tayfun (1986). We first
note that v, in (8) and ns in (12) may be written
as

1
m= WCCOS(ka-(DJ—(D) (14)
WC sin(kx —wJs— ) (15)

where k. and w, are the spectral mean wave number
and frequency, respectively and C(x,r) and ¢(x1) are
the amplitude and phase processes. Furthermore,
we note that

nz:ﬁl(.%: >1/2 (16)
=) (7)
ﬂ4=ﬁ5<%j“>m (18)

It was shown by Tayfun (1986) that if C and ¢
are O(1), then ¢ and ¢ are O(v) and ‘all higher
order derivatives of C and ¢ are of corresponding
higher order smallness of v where

v=((MM/M})—1)"*<1 (19)

is a measure of the bandwidth of the frquency spe-
ctrum which, for all practical purposes, is a small
quantity. Based on this assumption, nondimensional
wave elevation, {;, can be rewritten, to the order

of v,
(Mo 1 1
&= ( o ) (m > enm;+ 2714115> (20)
M, \12 1 .
= (—0) {Ccos x——=eC-Clo.+ )
my 2

(—cosy cosy +siny sinx)}

M, )1/2 1 .
=2 +—eClw + )
( oy {C Cos X, 5 £C(w.+0) cost}

Then it follows that, to the order of v,

6= C( )W @1

M, > . s
— +
( ) {C cosy + Cl(w, + ¢)siny

+8C(me+<i))-C(co‘.+cf>)2sin2x}

g
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M2 )l/l . c .
— +Clo.+ o)
( ) {C cosy.+ C(w. + o) siny
+ 2eC(0, + d)siny - Cle. + d))zcosx}

G=g(mm )" @)
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= (ﬁ )UZ{ — C(w.+ d)cosy
My
—26C 0, + p)'cos + 2eCHw. + é))“sin’m}

In terms of v, { and & are

&= (22 ) (22 @)
= (1) o 2emi+2emd 4

In (13), (23) and (24), to the first order of &, my=M,,
my=M, and ms=M, The random variables, {;,
and §; are seen to be functions of ny, My M M4
and ns which are random variables having zero
mean and unit standard deviation. Furthermore, the
pairs (M. M3) and (nz, N4, 1s) are statistically indepen-
dent, each of which is jointly Gaussian. Therefore
the joint distribution of n;, 3, N3, Ne and ns is given
by

Jammnang( 0 ) fam(Ce Yognans(: -

(25)
where ) 1
LR sy s exp[_, 21— p)
(n%+n§—2pmms)J (26)
1
Sumans(, " '):_(2—)3/2—|Sl‘7 exp

3 3
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where the correlation coefficient p; is E[nmsl.
In (27), the matrix S of covariances of ny n4 and

Ns is
E[m3]  Elnmyd  Elnns]
S= Elnma]  Elni] Elnams] l (28)
Elnsa]  Elnmad  Elndl

and |S|; is the cofactor of the eclement in the
jth tow and kth column of S. After denoting the
correlation coefficients E[nin.]=p, and E[nns]=E
(nsn2J=ps, S is

(29)

By introducing the auxiliary random variables
&= (30)
&=ns (€1Y)

the joint distribution of §, &, &, & and &, fronus
(+), can be obtained by the standard method of
transformation of random variables [Papoulis, 19
65].

This is,

Saotus( )= unMi NafonmeM2 Ma Ms)
| §i5EELs ) | -

32
NiM2M:M4Ms ©2)

where J is the Jacobian of the variable transforma-
tion. From (13), (23), (24), (30) and (31), and follo-
wing the perturbation technique used by Huang e
al. (1983), it may be shown that, to the order of
€,

13
|J] :1—?8113 (33)

Here, M, M. m3, Me and ns on the right hand side
of (32) are to be replaced by the inverse of the
functions in (13), (23), (24), (30) and (31). These in-
verses may also be obtained approximately by the
perturbation method. That is, to the order of ¢,

=G+ el e G4
=6 +2e66 (35
M=+ 268 —2eG (36)
=& €1
ns=&s (38)

Substituting (34), (35), (36), (37) and (38) into (32)
and performing the integration with respect to &
and &,

Jage(. )= J’ ff€1€2€3§4<5( """ -+ )Gl (39)

the joint distribution of a nondimensional wave ele-
vation, its nondimensional first and second derivati-
ves can be obtained. The integration in (39) can
be easily carried out although the task is lengthy
and tedious. The result is
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where

0=0:+ 0+ Qs 41

o= 1+ﬁpz 4pp2)5i G — 2(1—)C2§3
—2(1——)13p1+pzp3 4pip3)i 42)

£

= {2(1—(4P° plp3)_28}'c%€3+m

(17— 14pi+ pip2ps — 4p3)s 43)
_ £ , &

0= A=) 5p:6 83 Wg (44)

5. PEAK DISTRIBUTION

Substituting (40) into (1), we can obtain the pro-
bability density function of the peak of nonlinear
wave elevation, f,(G).

That is, fy(&) is given by

S )=FyGIN, 45)
Fe=[" 1lfues 0, Gt )
it i:wm exp( 52+ N @)

where

~ 1 €
M= W{_ S5 20t +pipaps—4p2)—pido

5 (1 —5pt+ plpzps)C%Jf—PlCO} exP(" P} )
(43)

~ 1 € €
N= WATPI 1+3(4pn—pzps)€o—3p£3}

exp( —% 1 E{Z)p% ) (49)

- fi—e1 -y} (50)

To quantify the above results, we must specify the
wave spectrum from which the quantities p, P2, ps
and ¢ may be calculated. In this study, we shall
use the Wallops spectrum (Huang et al., 1981) which
takes the form

@) = = engf (2 ] (51)
where
_ | loglfgzé ) I (52)

is the absolute value of the slope of the spectrum
(on the log-log scale) in the high frequency range
and

& = MY*/Lo=ck/Qm)=¢/(2n) (53)

is the significant slope, Lo being the wave length
whose frequency g corresponds to the peak of the
single peak Wallops spectrum. In (51), the coeffi-
cient a is given by

(2n‘é)2m(m— 1)/4 1

o= 40 A r((m_ 1)/4) (54)

where I(-) is the gamma function (Abramowitz
and Stegun, 1968).
From (51), it may be shown that

P T Tm = E;Z]_raﬁj—s)m] ©3)

P T Tm fg;ﬁfrﬁiﬁ]_ 5)/4] G6)

P T om = E%]_rﬁzﬁj—s)/ﬂ oD
and

o= r:rr[[((;n_— 15))//3 I 9

so that € p;, p, and p; are solely dependent on
the value of £ which was shown (Huang er al., 1980)
to rarely exceed 002 in the ocean.

As £=0, the peak distribution in (45) is reduced
to
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Fig. 1. Peak distribution.

Jal&) = \71_2—71{ - mCoexp( - é‘@%) . J’ :zw%q
exr)( - %zz)dz +/1—pir exp< 1.8 )}

2 1—pt
(59

which was exactly the same as the probability den-
sity function of the peak of Gaussian process of
finite bandwidth derived by Cartwright and Lo-
nguet-Higgins (1956). For a narrow-band process (p;
= —1), (45) reduces to Rayleigh distribution. In Figs.
1 and 2, the probability density function in (45)
is plotted for {=0.015 and 0.02 and the peak distri-
bution of linear waves is also included for compari-
son. It is noted that for random process of moderate
bandwidth, the peaks can be negative as well as
positive and the peak distribution associated with
nonlinear waves differs from the linear counterpart.
The general character of this difference is in the
form of a spreading of the density mass toward
the higher and lower crests and a negative skewness
of peak distribution of nonlinear waves, whereas
a positive skewness is detected in the peak distribu-
tion of a linear wave. In Figs. 3, the peak distribu-
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Fig. 2. Peak distribution.

-]

N

N
1

—— narrow banded
—— moderate banded-

e
2
f

probability density function
o
]
|

e
[
T

0.40 —

0321

024 +—

0.16 ¢+

0.08 +—

0.00 ! { } ! } | | | ]
60 <50 -40 -30 20 -1.0 00 1.0 20 30 40 50 60

magnitude of peak
Fig. 3. Peak distribution (for £=0.015).

tions of nonlinear waves of narrow bandwidth and
moderate are plotted together for £=0.015.
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Fig. 4. Trough distribution.

6. TROUGH DISTRIBUTION

Inserting (40) intc (4) and after some manipula-
tion, the probability density function of troughs of
nonlinear random waves, f;({) is given by

JeolCo)=FA{Go}/N, (60)
where

F@= [ 16l o 0. GG (61)

= —Mf :m \/m.exp( - %i)dz +N (62)

Ni= {1 o1 -2} (©3)

In (62), M and N are given by (48) and (49), respec-
tively. As €=0, the trough distribution is reduced
to

Jo(Go)= ﬁ{p.@exp( - %@ ' f . piio/1-ef

1 1 2 \
exp( — ?zz>dz X+/1—pi+ exp( 57 Eopz )}

1/
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Fig. 5. Trough distribution.

For a narrow band case, p;=—1, (64) reduces to
Rayleigh distribution as expected. The probability
density function in (60) is plotted in Fig. 4 for &=
0015 and 0.02. In Fig. 5 the probability density fun-
ction of trough of nonlinear random waves is plot-
ted again with the trough distribution of linear wa-
ves for £=0.015 and 0.025. It is noted that for ran-
dom process of moderate bandwidth, the troughs
can reach above the mean water level and the
trough distribution associated with nonlinear waves
is more peaked than the linear counterpart and shi-
fts its density mass toward positive value in an inc-
reasing manner as significant wave slope gets larger.
It is also noted that the trough distribution in (60)
gives negative value at the negative extreme trail
of the function. This anamoly can be attibuted to
the assumption made in the application of the per-
turbation methold. In Fig 6, the trough distribution
of nonlinear waves of narrow bandwidth and mo-
derate bandwidth are plotted together for £=0.015.

7. CONCLUSION

Although a great deal of recent progress has been



Peak Distribution of Nonlinear Random Waves of Finite Bandwidth 65

e
N
)
i

—— narrow banded
—— moderate banded

o
4
I

probability density function
o
4
I

I3
&
T

0.09 1—

-0'18—5.0 40 30 -20 410 00 10 20 30 40 50

magnitude of trough

Fig. 6. Trough distribution (for £=0.015).

made on the theory of nonlinear waves, the compli-
cated form of nonlinear random waves has made
its application difficult. In particular, theoretical
treatment of the statistical properties and distribu-
tion relevant to nonlinear wave field, such as crest
and trough of wave elevation have not been found.
In a case when the underlying frequency spectrum
is narrow, the stochastic representation of a nonli-
near sea surface is reduced to a familiar form in
which each realization is an amplitude modulated
second order Stokes wave. In contrast with the int-
ricate complexity of the expression of nonlinear wa-
ves of finite bandwidth, such an approximation co-
nstitutes a simpler formulation to study numerically
or analytically the nonlinear effects on the statistical
description of wave properties. But considering the
side band instability of Stokes wave, the narrow
band assumption at the site away from the genera-
ting area is no longer valid. For waves of finite
bandwidth, an approximate wave model proposed
by Tung e al. (1939} is promising alternative from
which the joint distribution of nonlinear wave ele-
vation. its first and second derivatives can be obtai-

ned and the structure of which is simple enough
so that statistical properties of such nonlinear ran-
dom waves can be obtained. Based on this wave
model, first, the joint distribution of wave elevation,
its first and second derivatives were derived and
the crest and trough distributions of nonlinear ran-
dom waves were obtained. It was shown that as
significant wave slope increases, these extreme dist-
ributions deviate from the linear counterpart in an
increasing manner. The general character of this
deviation is in the form of a spreading of the den-
sity mass toward the larger and smaller crests and
smaller troughs, which is consistent with the verti-
cally asymmetric properties of nonlinear waves
which are known to have shallower troughs, and
sharper and larger crests than the linear counter-
part.
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