• Title/Summary/Keyword: nonlinear wave

Search Result 953, Processing Time 0.024 seconds

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

On the Study of Nonlinear Wave Diffraction by the Breakwaters (방파제 주위에서의 비선형 회절 현상에 대한 고색)

  • 조일형;김장환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.350-356
    • /
    • 1993
  • We carry out a numerical calculation to understand the nonlinear wave deformation around breakwaters using the Boussinesq equation, which is weakly nonlinear and weakly dispersive shallow water equation. A numerical method based on a finite element scheme and fourth order Runge-Kutta algorithm is employed to investigate the diffraction of incident waves by the breakwater. As a computational model, two-dimensional wave flume is treated. The breakwaters is perpendicular to the side wall of a channel. From the numerical results, the wave deformations according to the change of the length and the thickness of breakwaters are investigated. We also investigate the effect of the nonlinearity by comparing the results with the linear solutions.

  • PDF

NEGATIVE SOLUTION FOR THE SYSTEM OF THE NONLINEAR WAVE EQUATIONS WITH CRITICAL GROWTH

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • We show the existence of a negative solution for the system of the following nonlinear wave equations with critical growth, under Dirichlet boundary condition and periodic condition $$u_{tt}-u_{xx}=au+b{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha-1}{\upsilon}_+^{\beta}+s{\phi}_{00}+f,\\{\upsilon}_{tt}-{\upsilon}_{xx}=cu+d{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha}{\upsilon}_+^{{\beta}-1}+t{\phi}_{00}+g,$$ where ${\alpha},{\beta}>1$ are real constants, $u_+={\max}\{u,0\},\;s,\;t{\in}R,\;{\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator and f, g are ${\pi}$-periodic, even in x and t and bounded functions.

  • PDF

Nonlinear Hydroelastic Analysis Using a Time-domain Strip Theory m Regular Waves (규칙파중 시간영역 스트립이론을 이용한 비선형 유탄성 해석)

  • CHO IL-HYOUNG;HAN SUNG-KON;KWON SEUNG-MIN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.1-8
    • /
    • 2005
  • A nonlinear time-domain strip theory for vertical wave loads and ship responses is to be investigated. The hydrodynamic memory effect is approximated by a higher order differential equation without convolution. The ship is modeled as a non-uniform Timoshenko beam. Numerical calculations are presented for the S175 Containership translating with the forward speed in regular waves. The approach described in this paper can be used in evaluating ship motions and wave loads in extreme wave conditions and validating nonlinear phenomena in ship design.

Wave induced motion of a triangular tension leg platforms in deep waters

  • Abou-Rayan, A.M.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 2013
  • Tension leg platforms (TLP's) are highly nonlinear due to large structural displacements and fluid motion-structure interaction. Therefore, the nonlinear dynamic response of TLP's under hydrodynamic wave loading is necessary to determine their deformations and dynamic characteristics. In this paper, a numerical study using modified Morison Equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between all degrees of freedom on the dynamic behavior of a TLP. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics was considered.

Application of the Weak-Scatterer Hypothesis to the Wave-Body Interaction Problems

  • Kim, Yong-hwan;Sclavounos, Paul-D.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • The present study concentrates on the weak-scatterer hypothesis for the nonlinear wave-body interaction problems. In this method, the free surface boundary conditions are linearized on the incoming wave profile and the exact body motion is applied. The considered problems are the diffraction problem near a circular cylinder and the ship response in oblique waves. The numerical method of solution is a Rankine panel method. The Rankine panel method of this study adopts the higher-order B spline basis function for the approximation of physical variables. A modified Euler scheme is applied for the time stepping, which has neutral stability. The computational result shows some nonlinear behaviors of disturbance waves and wave forces. Moreover, the ship response shows very close results to experimental data.

  • PDF

Nonlinear Wave Transformation of a Submerged Coastal Structure (잠수구조물에 의한 비선형파랑변형에 관한 연구)

  • Kim, W. K.;Kang, I. S.;Kwak, K. S.;Kim, D. S.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 1994
  • The present paper discusses the nonlinear wave deformation due to a submerged coastal structure. Theory is based on the frequency-domain method using the third order perturbation and boundary integral method. Theoretical development to the second order perturbation and boundary integral method. Theoretical development to the second order Stokes wave for a bottom-seated submerged breakwater to the sea floor is newly expanded to the third order for a submerged coastal structure shown in Figure 1. Validity is demonstrated by comparing numerical results with the experimental ones of a rectangular air chamber structure, which has the same dimensions as that of this study. Nonlinear waves become larger and larger with wave propagation above the crown of the structure, and are transmitted to the onshore side of the structure. These characteristics are shown greatly as the increment of Ursell number on the structure. The total water profile depends largely on the phase lag among the first, second and third order component waves.

  • PDF

STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYER IN CURVILINEAR COORDINATE SYSTEM USING NONLINEAR PSE (비선형 PSE를 이용한 압축성 경계층의 안정성 해석)

  • Gao, B.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.134-140
    • /
    • 2007
  • Nonlinear parabolized stability equations for compressible flow in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Blasius flow is tested. The results of the present computation show good agreement with DNS data. Nonlinear interaction can make the T-S fundamental wave more unstable and the onset of its amplitude decay is shifted downstream relative to linear case. For nonlinear calculations, rather small difference in initial amplitude can produce large change during nonlinear region. Compressible secondary instability at Mach number 1.6 is also simulated and showed that 1.1% initial amplitude for primary mode is enough to trigger the secondary growth.

  • PDF

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Dib, Gerges;Roy, Surajit;Ramuhalli, Pradeep;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.867-876
    • /
    • 2019
  • Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.