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Abstract

In this paper, nonlinear interactions between water waves and a horizontally submerged circu-
lar cylinder are numerically simulated. In this case, the nonlinear interactions between them
generated a wave breaking phenomenon. The wave breaking phenomenon plays an important
role in the wave force. Negative drifting forces are raised at shallow submerged cylinders un-
der waves because of the wave breaking phenomenon. For the numerical simulation, a finite
difference method bascd on the unsteady incompressible Navier-Stokes equations and the
continuity equation is adopted in the rectangular grid system. The free surface is simulated
with a computational simulation method of two-layer flow by using marker density. The re-
sults are compared with some existing computational and experimental results.
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1 Introduction

Free surface problems should be considered not only in linear motions, but also in nonlinear mo-
tions. Nonlinear motions included in this paper are the wave breaking phenomenon which is a
kind of flow separation, and the air-bubble which is a kind of two-phase flow phenomenon. Since
these nonlinear motions in free surface often cause significant wave forces on structures, the un-
derstanding of these phenomena is very important in the science and engineering fields.

The classical theories have been very useful for the understanding of the free surface waves,
and for the estimate of the resultant wave forces. However, it ceases to be useful when the above-
mentioned nonlinear motions play a significant role, because the classical theories are based on
linear theory. Various numerical methods for viscous rotational flows have been devised since the
MAC (Marker and Cell) method was introduced(Welch et al 1966). Chan and Street(1970) and
Hirt and Nichols(1981) modified the original MAC method in order to satisfy the dynamic and
kinematic free surface conditions, Before the VOF (Volume Of Fluid) method was introduced,
earlier numerical techniques to define free surface could hardly cope with the large distortion of
boundary surface except for line-segment method. The VOF method overcame the drawback by
allowing steep and multi-valued interface involving merging and breaking. However, the free sur-
face was not sharply defined. The boundary element method has been used as one of the most
effective tools for the free surface wave problems. Some important works(L.onguet-Higgins and
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Cokelet 1976, Greenhow et al 1982) with this method have significantly contributed to the mech-
anisms of wave breaking phenomena. However, these works are restricted when the overturning
front wave impinges on the free surface, and succeeding complicated motions become more im-
portant. The versatile applicability of the finite difference method in the filed of water waves was
demonstrated by Harlow and Amsden(1971). However, the details of the method, especially the
technique of the implement of free surface conditions, were not well described. Miyata et al(1986)
simulated breaking waves for a submerged circular cylinder under the free surface in waves by us-
ing the finite difference method called TUMMAC-Vbk. However, this method also looses most
of its validity when it is used to simulate the flow phenomena after the wave breaking which in-
cludes air-trapping. Many other techniques, such as the SPH(Monaghan 1994) marker-density
technique(Park and Miyata 1994), and the level set method(Sussman 1994) have been developed
to simulate sharp and large moving boundary deformation with wave breaking phenomena.

In this paper, breaking waves on the free surface above a submerged circular cylinder are
numerically simulated by the marker-density method. As compared with other methods in order
to satisty free surface conditions, the marker-density method is very effective to simulate breaking
waves and the complicated free surface phenomena after wave breaking, The breaking waves
occur through the interaction of the submerged cylinder and waves. The higher the wave height
is increasing upward, the steeper the free surface is deformed, and at last the breaking wave is
generated. The simulated results show that negative drifting forces are occurring through the
interaction of the submerged cylinder and wave breaking phenomenon on the free surface.

2 Computational method

2.1 Governing equations

The governing equations for the present computations are the following Navier-Stokes equations
and the continuity equation for two-dimensional incompressible viscous flows.
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where u and w are the velocity components in the x and z directions, respectively. y is the dynamic
viscosity coefficient, P is the pressure, p is the density, and g is the gravitational acceleration. For
the computation of two-phase flow, the water and air regions are solved with the constant physical
value of the density, respectively.

2.2 Finite difference method

The governing equations are differentiated with a finite differencing scheme with a fixed staggered
variable mesh system. The Adams-Bashforth scheme is adopted for the time intcgration of mo-
mentum equations. For the approximations of convection terms, a third order upstrcam scheme,
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a second order hybrid scheme and a first order upstream scheme are applied with the considera-
tion of the number of neighboring fluid cells. The other spatial derivative terms are discretized by
the centered differentiating scheme. Pressure distribution is obtained by the solution of the Pois-
son cquation, and the SOR (Sussessive Over Relaxation) method is employed to solve the finite
differencing form of this equation.

2.3 Body boundary condition

The No-slip condition is implemented with an irregular leg length for the calculation of differential
terms around the body surface, and the flux calculation for divergence zero is used in a body
boundary cell which is involving the body surface. In each body boundary cell, the velocity and
pressure are computed by a simultancous iteration method until the pressure is converged.

2.4 Free surface boundary condition

The dynamic frec surface boundary condition is satisfied in the present computation is as follows:
P=F on free surface )

where P, is the atmospheric pressure. When the Poisson equation of pressurc is solved near the
free surface, irregular stars are employed to satisfy the dynamic free surface boundary condition.

The kinematic free surface boundary condition satisfied in the present computation is as fol-
lows:

D(z —1n)
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where 7 is the wave height. Equation (5) shows that the normal velocities of the fluid particle on
the free surface and the free surface boundary must be equal. One of the easy treatments of the (5)
is to usc marker particles moving with local velocity which is calculated from neighboring fluid
cells. Heo and Lee(1996) compared the results of various methods associated with the kinematic
free surface boundary condition and showed that the marker particle method is more accuratc than
the line-segment method. They combined the marker particle and line-segment methods to reduce
numerical error and to simulate nonlincar free surface motion which is accompanied by breaking
waves.

2.4.1 Marker-density method

The Marker and line-segment methods are very difficult when addressing the nonlinear free surface
motions after the breaking phenomena of waves. Therefore, the marker-density method is adopted
in our computation for the satisfaction of the kinematic free surface boundary condition during
the wave breaking process. Initially, the marker-densities of liquid and gas cells arc uniformly
assumed (o be scalar value p<'> and p<?> in each fluid region. The initial values are sct equal
to the physical values at the center of cach cell. When each densities of gas and liquid are scalar
valuc p<'> and p<?>, M, is dcfined as a scalar value of each density. The variation at the marker-
density of cach cell is defined by density [unction M,. From the distribution of marker-densitics
the location of the interface between the two fluid regions is defined by an appropriate position
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in the intermediate region of the density function(p<'> and p<?>). That is, it is considered that
the fluid of cach cell in the intermediate region is mixed with two-phase fuids. However, it must
be noticed that the maker-density is adopted only for the determination of the location of the
interface. The physical value of density is used for solving the governing equations of fluid flow
in each region, respectively.

24,2 Position of free surface

The following is the transport equation of the density function, Equation (6), is employed for the
determination of the location of free surface instead of (5).

oM, OM,  OM,

p P _
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Although each fluid region has the distinctive physical value of density, this equation is continu-
ously solved all over the fluid domain. That is, the equation of the kinematic free surface boundary
condition is directly solved with the marker-density as the representative quantity for the free sur-
face. From the distribution of the marker-density obtained by solving (6), the location of the
interface between two fluid regions is determined by the following definition of free surface with
the density function.

<1l> <2>
— n
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2.4.3 Irregular star technique near free surface

In order to satisfy the dynamic free surface boundary condition represented by (4), the irregular
star technique is used in the solution procedure for the Poisson equation of pressure. The distance
between the pressure point of cach ccll and the interface is called the leg-length. The leg-length
and the pressure on the interface are used in the Poisson equation instead of the grid spacing
and the pressure at the pressure point of the neighboring cell. The location of the interface is
determined by (7), and the sample equation for the leg-length of the case of a positive x-direction
is represented by (8). Figure | is the schematic sketch of the irregular star technique near the free
surface.
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244 Extrapolation of physical quantity across free surface

In the present computation, the pressure on the interface depends on the fluid flow of the neigh-
boring region. Therefore, the pressurc valuc on the interface is determined by extrapolating the
pressure from an adjacent cell to the interface. In fact, the pressure on the interface is decided by
using an equivalent extrapolation in horizontal direction and a linear extrapolation of the acceler-
ation of gravity in a vertical dircction as shown in (9). Figure 2 is a schematic sketch of pressure

n
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Figure 1: Schematic sketch of the irreg- Figure 2: Schematic sketch of pressure
ular star technique near the free surface extrapolation near the free surface
extrapolation near the free surface.
Pla P2 = ‘l)i,k (9)

Py = Py — p<'” gils

Py = Py — p<'> g7y

where P, and P, values are horizontally extrapolated, also P3 and Py values are vertically extrap-
olated, respectively.

On the interface, velocity extrapolation is also necessary to calculate differential terms near
the free surface. When the slope of the interface is greater than 45, the velocities are horizontally
extrapolated from the interested region to the neighboring region, and the velocity gradient in the
normal direction is approximately neglected at the interface.

3 Results of computation and discussion

3.1 Condition of computation

The simplest two-dimensional configuration of a submerged body is introduced for the compu-
tation of wave breaking. A circular cylinder of which the radius is 0.2m is horizontally placed
beneath the free surface. The depth conditions of submergence (the vertical distance between the
center of the cylinder and the free surface of calm water, denoted by 'd’) are 0.275m, 0.3m and
0.35m, respectively. Therefore, the clearances between the top of the cylinder and the undisturbed
free surface are 0.075m, 0.1m and 0.15m. The details of the computational conditions are shown
in Table 1.

The computational domain is 6.1m long, the water depth is 1.5m and the height above the
free surface is 0.6m. The length is elongated by 3.6m to the downstream direction in comparison
with the previous computation(Miyata et al 1988) so as to avoid unfavorable effects from the
downstream boundary conditions. The length of the cell varies from 15.7mm to 260.0mm and the
height of the cell varies from 3.0mm to 15.3mm. The total number of the cells for the present
computations is 41200. Figure 3 is the grid system near the circular cylinder under free surface.

54



S.-N. Kim and Y.-G. Lee: Numerical Simulations of Breaking Waves ...

Table 1: Computational conditions for the submerged circular cylinder

Wave Length(m) 1.57
Wave Height(m) 0.06
Inflow Boundary Condition | Second-order Stokes Wave
dx, min(m) 0.0157
dz, min(m) 0.0030
Dt(sec) 0.0005
Full Domain(m) 6.1 x 2.1
Submerged depth(m) 0.275 | 0.300 0.350
d(depth)/r(radius) 1.375 | 1.500 1.750
free surface
=
-0.1
N-0.2
-0.3
0.4

0 0.4
X

Figure 3: Grid systcm ncar the circular system under free surface
The computations are started from the rest condition, and by giving velocities at the inflow

boundary the inflow boundary cells begin to generate incident waves. The velocities on the inflow
boundary are given by second-order Stokes wave theory as shown in (10),

cosh(z + d) 3 (aw)? cosh 2(z + d)
_ 3 2
u aw nkd < 6+ s e cos 26 (10)
_ sinh(z +d) . 3 (aw)?sinh2(z + d) .
R T et

where c is celerity of wave, w is the angular frequency, k is the wave number and d is the water
depth. Stokes regular waves of which length (X) is 1,57m, height (h0) is 0.06m and period(T) is
1.003sec are generated on the inflow boundary. The time increment is 0.00 Isec, and the calculation
is continued until about sixth wave crest has reached the circular cylinder.
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Figure 4: Wave deformation

3.2 Computation results

In the case of a shallowly submerged circular cylinder, nonlinear waves are generated and caused
by the interaction of the circular cylinder and the free surface, and in some cases breaking waves
are observed. The time-sequence of wave profiles which are numerically simulated above a circu-
lar cylinder is shown in Figure 4 for the representation of the wave breaking phenomena on the free
surface. In this figure, the time interval is 0.1 sec, and the amplitude of the incident wave is larger
than that of the objective wave(as the wave height is 0.06m) in the present study because a properly
steep wave is used for the simulation of typical overturning breaker. The wave generated by the
numerical wave-maker is approaching the circular cylinder in the first figure in Figure 4. where, T
is time. The wave is deformed into a jump-like configuration just above the cylinder as seen in the
second and third stages in Figure 4. After that, it breaks above the rear side of the cylinder, and the
wave breaking phenomena arc obscrved in the fourth and fifth figures successively. Therefore, the
sequence of wave breaking (Steeping of Wave-Surface — Singularity of Wave Surface — Over-
turning or Spilling — Impinging — Air-trapping & Splashing) is representatively well observed
in this figure. Propagation procedurcs after the overturning motion which have been impossible to
simulate by existing methods(marker & line-segment methods) are obviously shown in the results
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Figure 5: Pressure contours (Depth=0.275m)

of the present computation.

As shown in Figure 5, when the depth of submergence is 0.275m, the time-sequences of con-
tour maps of pressure and wave profiles arc indicated. The time-increment is 0. 1sec. These figures
qualitatively show the nonlinear complicated features of the wave profiles and the pressure distri-
butions near the free surface. Wave breaking is generated above the rear side of the cylinder and
propagates downstream. Because of the influence of the wave breaking, the concentration of pres-
sure appears at the wave front when the overturning and spilling are generated and reattached to
the free surface. The pressure at the rear side of the cylinder is increased, and the horizontal com-
ponent of the wave force on the cylinder which is given by the integration of the pressure along the
cylinder surface, gives rise to the negative drifting force which is acting on the negative direction
to the incident wave. Figure 6 and 7 show the pressure contours and the wave profiles in cases of
0.3m and 0.35m submerged depth, respectively. In these figurcs, the wave breaking phenomena
disappear since the submerged water depth is deep.

3.3 Comparison with existing resuits

The experimental and computation resuits by Miyata(1986) and Miyata ct al(1988) are used for
the validation of the present simulation results. The forces acting on the cylinder arc converted in
dimensionless form as follows.
f
Pee——— 11

(pghorL) (o
where f is the calculated force, hy is the wave height, 7 is the radius of cylinder, and L is the
span wisc Iength of the body. In the computation, the horizontal and vertical components of wave
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Figure 6: Pressure conlours Figure 7: Pressure contours
(Depth=0.3m) (Depth=0.35m)

forces acting on the cylinder arc calculated, respectively. It may be noted that the backward and
downward forces are considered positive as shown in Figure 1.

Figure 8, 9 and 10 show the time records of the computed horizontal (surging) and vertical
(heaving) wave forces acting on a single circular cylinder submerged under the wave of which the
wave length is 1.57m. Submerged depths are 0.275m, 0.3m and 0.35m, respectively. Figure 7
shows nonlinear forces at breaking points when the submerged depth is 0.275m. In the case of
0.3m depth, Figure 9 shows smaller nonlinear forces than that of Figure 8 caused by the disap-
pearance of overturning motions and only the generation of steep and singularity waves above the
cylinder as shown in Figure 6. Figure 7 shows similar profile as the incident wave form without
wave breaking in the case of 0.35m dcpth.

Fig. 11 shows the mean horizontal and vertical forces at the various conditions of submer-
gence. In this figure, d/r 1.375, 1.5 and 1.75 correspond to the submerged depths 0.275m, 0.3m
and 0.35m, respectively. In each case, the comparison of the computed mean forces(e) with ex-
isting experiment results(o, A) shows better agreement than previous computations (Miyata et al).
Especially, in the case when the submerged depth is 0.275m, the present computed result shows
better agreement than the linc-scgment method(Q). It seems that the present method is a more
proper method for the simulation of nonlinear flow phenomena on the free surface than other ex-
isting numerical methods for the simulation of the nonlinear [ree surface. That is, the deeper the
cylinder is submerged, the smaller the negative drifting force that appears. Also. the higher the
cylinder increases. the larger the lifting force that appears.
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Figure 9: Computed horizontal and ver- Figure 10: Computed horizontal and
tical wave forces(Depth=().3m) vertical wave forces(Depth=0.35m)

As shown above, the present numerical method shows the good results which are close to phys-
ical phenomena for the wave breaking above a shallowly submerged circular cylinder. Moreover,
negative drifting forces caused by wave breaking on the free surface are simulated with precise
accuracy, and from the comparison of time-mean values with experimental results, the present
method seems to be useful for the simulation of nonlinear waves on the free surface.

4 Concluding remarks
The simulated nonlinear wave motions on the free surface and wave forces show very good agree-
ment with the actual nonlinear phenomena, and the negative drifting forces induced by breaking

phenomena coincide with some existing experimental data. Therelore, the present method seems
1o be useful for the simulation of nonlincar wave motions. In order to obtain better results than the
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Figure 11: Mean horizontal and vertical wave forces on a submerged circular cylinder at
the various conditions of submergence

present method, the influence of surface tension and turbulence must be considered.
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