• Title/Summary/Keyword: nonlinear vibration control

Search Result 272, Processing Time 0.024 seconds

A Study on Vibration Control Performance of Macpherson Type Semi-Active Suspension System (맥퍼슨 타입 반 능동 현가장치의 진동제어 성능 고찰)

  • Dutta, Saikat;Han, Chulhee;Lee, TaeHoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • The paper studies a comparison analysis of semi-active control strategies for a Macpherson strut type suspension system consisting of MR(magneto-rheological) damper. As a first step, in order to formulate governing, a dynamic full model of a Macpherson strut is developed considering the kinematics. The nonlinear equation of motion of the strut is then linearized around the equilibrium point. A new adaptive moving sliding model controller is developed for fast response of the system. A newly proposed adaptive moving sliding mode control strategy is then compared with conventional sliding mode controller and skyhook controller. The comparison is made for two different types of road inputs; bump and random road profiles showing superior vibration control performance in time and frequency domains.

Performance Enhancement of Pneumatic Vibration Isolation Tables in Low Frequency by Active Control (공압능동제어를 이용한 저주파 영역에서의 공압제진대 제진성능 개선에 대한 연구)

  • Shin, Yun-Ho;Oh, Ki-Yong;Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.72-79
    • /
    • 2007
  • As environmental vibration requirements on precision equipment become more stringent, use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by volume of chambers. In this study, an active control technique, so called time delay control which is considered to be adequate for a low frequency or nonlinear system, is applied to a single chamber pneumatic isolator. The procedure of applying the tine delay control law to the pneumatic isolator is presented and its effectiveness in enhancement of transmissibility performance is shown based on simulation and experiment. Comparison between passive and active pneumatic isolators is also presented.

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method(Part 2:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 2:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • In this study, the nonlinear time history analysis of seismic retrofitted structures with TS damper for seven ground motion records was conducted for the purpose of verifying the seismic strengthening effect of TS seismic retrofitting method. Through comparison of the interstory drift ratio and the energy dissipation amount of the non - reinforced structure obtained and those of retrofitted structures with TS damper from the nonlinear time history analysis, the interstory drift ratio was reduced by about 30% and the amount of energy dissipation through the structure was halved. As a result, it was confirmed that the damping performance of the TS seismic retrofitting method is excellent.

Chaotic vibration characteristics of Vertical Axis Wind Turbine (VAWT) shaft system

  • C.B. Maheswaran;R. Gopal;V.K. Chandrasekar;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • We study the progressive full-scale wind tunnel tests on a high solidity vertical axis wind turbine (VAWT) for various tip speeds and pitch angles to understand the VAWT shaft system's dynamics using 0-1 Test for chaos. We identify that while varying rotor speed (tip speed) of the turbine, the system's dynamics change from periodic to chaotic through quasiperiodic and strange non-chaotic (SNA) states. The present study is the first experimental evidence for the existence of these states in the VAWT shaft system to the best of our knowledge. Using the asymptotic growth value Kc in 0-1 test, when the turbine operates at the low tip speeds and high pitch angles for low incoming wind speeds, the system behaves periodic (Kc ≈ 0). However, when the incoming wind speed increases further the system's dynamics shift from periodic to chaotic vibrations through quasi-periodic and SNA. This phenomenon is due to the dynamic stalling of blades which induces chaotic vibration in the VAWT shaft system. Further, the singular continuous spectrum method validates the presence of SNA and differentiates the SNA from chaotic vibrations.

A semi-active smart tuned mass damper for drive shaft

  • Cai, Q.C.;Park, J.H.;Lee, C.H.;Park, J.L.;Yoon, D.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

Precise Control of Inchworm Displacement Using the LQG/LTR Technique (LQG/LTR 기법을 이용한 이송자벌레 변위의 정밀 제어)

  • Jeon, Yoon-Han;Hwang, Yun-Sik;Park, Heung-Seok;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2015
  • In this study, the linear quadratic Guassian loop transfer recovery (LQG/LTR) control technique was combined with an integrator and applied to an inchworm having piezoelectric actuators for precise motion tracking. The piezoelectric actuator showed nonlinear response characteristics, including hysteresis, due to its ferroelectric characteristics and the residual displacement phenomenon. This paper proposes a feedback control scheme using the LQG/LTR controller with an integrator to improve the ability to track the response to complex input signals and to suppress the phenomenon of hysteresis and residual vibration. Experimental results show that the developed feedback control system for an inchworm can track the various motion contours quickly without residual vibration or overshoot.

Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control

  • Alaimo, Andrea;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.459-473
    • /
    • 2020
  • The aircraft nose landing gear (NLG) can suffer of an unstable vibration called shimmy that is responsible of discomfort and of fatigue stress on the gear strut components. An adaptive controller is proposed in this paper to cope with the aforementioned problem. It is based on a method called Modified Simple Adaptive control (MSAC) which is able of governing the NLG motion by using a feedback signal that relies on just one output of the plant. The MSAC only asks for the passivity of the controlled plant. With this aim, a parallel feedforward compensator is employed in this work to let the system satisfies the almost strictly passivity (ASP) requirements. The nonlinear equations that govern the aircraft NLG shimmy vibration behavior are used to analyzed the controlled system transient response undergoing an initial disturbance and taking into account different taxiing speed values.

Observer-based Controller Design of a Magnetic Bearing System (외란관측기에 기초한 자기베어링시스템의 제어기 설계)

  • 송상호;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.470-473
    • /
    • 1995
  • There exist two critical in application of the magnetic bearing system. One is the control axis interference caused by gyroscopic effect and the other is the vibration caused by the unbalance on the rotor. To solve both problems at the same time, first, a centralized full-state feedback controller based on the LQR control theory was designed to compensate for the gyroscopic effect. Second, disturbance rejection control input based on the observer was designed to avoid the vibration causer by the unbalanced rotor. Balancing input computer accroding to LQR and output of the observer were derived in term of rotational speed. Effectiveness of the on-line balancing was verified through numerical simulation. The developed observer-based controller was also applied to the linear and nonlinear magnetic bearing systems.

  • PDF

Noise Identification and Control of 2-Pole Squirrel Cage Motor for Industrial Compressor (2극 컴프레셔용 전동기의 소음특성 규명 및 저감)

  • 주원호;임종욱;김동해
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.709-712
    • /
    • 2003
  • Recently, high noise problem was experienced during the development of 2-pole squirrel cage motor for industrial compressor. In order to firstly identify the noise characteristics, a variety of measurements were carried out. It was found out that high noise was dominated by linear and nonlinear slot noise components. For the development of low noise indusrial motor, the air gap between rotor and stator in the motor was firstly enlarged. Secondly, it was also modified for the cooling housing to have high absorption features. Consequencely, low noise 2-pole motor having the noise level of less 80㏈(A) was developed. In this paper, a series of noise identification and control process for this motor are introduced.

  • PDF

Design on the Controller of Flexible Robot using Sliding Sector Control (슬라이딩 섹터 제어를 이용한 유연한 로봇 팔에 대한 제어기 설계)

  • Han, Jong-Kil;Bae, Sung-Hwan;Yang, Keun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.541-546
    • /
    • 2010
  • When a flexible arm is rotated by a motor about an joint axis, transverse vibration may occur. The motor torque should be controlled in such a way that the moter rotates by a specified angle, while simultaneously stabilizing vibration of the flexible arm so that it is arrested at the end of rotation. In this paper, the dynamic model of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Nonlinear control with hysteresis deadzone using the sliding sector theory with continued input function in the sector is proposed.