• Title/Summary/Keyword: nonlinear systems control

Search Result 2,435, Processing Time 0.036 seconds

Nonlinear Attitude Control for Uncertain Quad-rotors Using a Global Approximation-Free Control Scheme (GAFC 비선형 제어기법을 적용한 쿼드로터의 자세 및 고도제어)

  • Kim, Young-Ouk;Park, Seong-Yong;Leeghim, Henzeh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.779-787
    • /
    • 2016
  • A nonlinear control law for the quad-rotor of a low-complexity, global approximation-free from system uncertainties and external disturbances are described in this paper. The control law guarantees convergence to a small bounded error using a prescribed performance function. The stability of the proposed nonlinear control system is also proven by the Lyapunov stability theorem. The advantage of this technique is that it has a simpler form than any other nonlinear compensators and is applicable to any nonlinear systems without precise knowledge of the systems. In this paper, the proposed approach is applied to attitude/altitude control of a quad-rotor. Numerical simulations are performed to investigate the proposed nonlinear attitude control law by applying it to an uncertain quadcopter system with external disturbances.

Switching Control for Second Order Nonlinear Systems Using Singular Hyperplanes

  • Yeom Dong-Hae;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.124-135
    • /
    • 2006
  • In this paper, we propose a switching control method for a class of 2nd order nonlinear systems with single input. The main idea is to switch the control law before the trajectory of the solution arrives at singular hyperplanes which are defined by the denominator of the control law. The proposed method can handle a class of nonlinear systems which is difficult to be stabilized by the existing methods such as feedback linearization, backstepping, control Lyapunov function, and sliding mode control.

Output Feedback Fuzzy H(sup)$\infty$ Control of Nonlinear Systems with Time-Varying Delayed State

  • Lee, Kap-Rai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2000
  • This paper presents and output feedback fuzzy H(sup)$\infty$ control problem for a class of nonlinear systems with time-varying delayed state. The Takagi-Sugeno fuzzy model is employed to represent a nonlinear systems with time-varying delayed state. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of fuzzy H(sup)$\infty$ controllers are given in terms of matrix inequalities. Constructive algorithm for design of fuzzy H(sup)$\infty$ controller is also developed. A simulation example is given to illustrate the performance of the proposed design method.

  • PDF

Variable Structure Control for Discrete-time Nonlinear Systems

  • Han, So-Hee;Cho, Byung-Sun;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1414-1417
    • /
    • 2003
  • In this paper, sliding mode controller for discrete-time nonlinear systems with uncertainties and disturbances are proposed. The concept of time-delay control (TDC) which consists of estimating the uncertain dynamics of the system through past observations of the system response is used. The proposed controller guarantees that the closed-loop system states are globally uniformly ultimately bounded (GUUB). It is also shown that the closed-loop system states are globally uniformly asymptotically stable (GUAS) if uncertainties are constant.

  • PDF

Vibration Control of Multi-Degree-of-Freedem Structure by Nonlinear TEX>$H_\infty$ Control

  • Kubota, Kenta;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.354-358
    • /
    • 1994
  • This study is concerned with H$_{\infty}$ control theory of nonlinear systems. Recently H$_{\infty}$ control theory has been developed to nonlinear systems, and especially nonlinear H$_{\infty}$ control theory based on the Hamilton-Jacobi inequality has been proposed. This corresponds to linear H$_{\infty}$ control theory based on the Riccati equation. In this paper, we apply it to a semi-active dynamic vibration absorber for multi-degree-of-freedom structure, and we design its state feedback controller via the Riccati equation. In the simulation, we show that it is effective for a vibration control.rol.

  • PDF

A State Observer of Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.613-616
    • /
    • 2012
  • This paper proposes the state observer design for nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

Fuzzy H$\infty$ Filtering for Nonlinear Systems with Time-Varying Delayed States

  • Lee, Kap-Rai;Lee, Jang-Sik;Oh, Do-Chang;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 1999
  • This paper presents a fuzzy H$\infty$ filtering problem for a class of uncertain nonlinear systems with time-varying delayed states and unknown inital state on the basis of Takagi-Sugeno(T-S) fuzzy model. The nonlinear systems are represented by T-S fuzzy models, and the fuzzy control systems utilize the concept of the so-called parallel distributed compensation. Using a single quadraic Lyapunov function, the stability and L2 gain performance from the noise signals to the estimation error are discussed. Sufficient conditions for the existence of fuzzy H$\infty$ filters are given in terms of linear matrix inequalities (LMIs). The filtering gains can also be directly obtained from the solutions of LMIs.

  • PDF