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Switching Control for Second Order Nonlinear Systems
Using Singular Hyperplanes

Dong-Hae Yeom and Jin-Young Choi

Abstract: In this paper, we propose a switching control method for a class of 2nd order
nonlinear systems with single input. The main idea is to switch the control law before the
trajectory of the solution arrives at singular hyperplanes which are defined by the denominator
of the control law. The proposed method can handle a class of nonlinear systems which is
difficult to be stabilized by the existing methods such as feedback linearization, backstepping,
control Lyapunov function, and sliding mode control.
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1. INTRODUCTION

Recently, there is growing attention to switching or
hybrid control systems as an alternative to a single
continuous feedback control [1,5,6,12,13,16,17]. The
most serious obstacle to developing switching or
hybrid schemes is unexpected behaviors caused by
switching action such as chaotic transient response or
even instability [8,9,10,15]. For example, it is well
known that a family of subsystems may diverge in
spite of the asymptotic stability of each subsystem
[9,12,15].

Many efforts have been devoted to coping with
such switching effects. One of the most representative
methods is dwelling time analysis [1,6,9,10]. The
main idea is that a switched system is stable if every
respective subsystem is stable and switching is
sufficiently slow to allow the transient effects to
dissipate after each switching. However, this method
is not applicable to a system with fast switching or
under arbitrary switching since switching is not
permitted for some time interval called dwelling time.

In this paper, we propose a switching control
method which guarantees asymptotic stability
regardless of unexpected behaviors caused by
switching action. In the proposed method, the control
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law is designed to guarantee the negative definiteness
of the time derivative of Lyapunov function. The
resulting control input is given as a rational function.
So, it is not defined where the denominator of the
rational function is equal to zero. To avoid this
singularity, we switch the control input before the
trajectory of the solution meets the singularity. The
asymptotic stability of a given system is shown by the
invariant property of a sector composed of the
singular hyperplanes. The proposed method can
handle a class of nonlinear systems which are difficult
to be stabilized by the existing methods such as
feedback  linearization,  backstepping, control
Lyapunov function, and sliding mode control.

This paper is organized as follows. In Section 2, we
present the motivation for this research and the issues
to be discussed herein. In Section 3, a switching
control scheme is proposed to overcome the problems
mentioned in Section 2. We classify the applicable
systems using a tangent cone in Section 4. Stability
analysis is addressed in Section 5. In Section 6, the
proposed scheme is compared with the existing
methods such as feedback linearization, backstepping,
control Lyapunov function, and sliding mode control.
Finally, we conclude the paper with some remarks in
Section 7.

2. PROBLEM STATEMENT

Consider 2nd order affine nonlinear systems with
single input and a constant input matrix. Suppose that
one of the dynamics of the system consists of only a
drift term i.e. the control input is not involved in this
scalar system as follows.

e {j(éc);g M
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where x =[x, x,1',g=[g O, f(X)=[f(x) f,(*)]
is a smooth vector field with the property f(0)=0,

and g, is a constant. At least one of the equilibria of
the system is the origin because f(0)=0and «(0)=0,

and suppose this is a distinct equilibrium point.
Consider a quadratic function ¥V =x'Mx for this

system, where M is a symmetric positive definite
matrix. Derivation of the function with respect to time
along the trajectory of the solution of the system
yields

V = %"Mx + x'Mx @)
=2x'Mf (x)+2x'M gu,
because M is a symmetric matrix and # is a scalar.
Define the control input as follows.
1
U= —[—x’Mf(x) - x'Mx] . 3)

x'Mg

Since ¥ = —2x'Mx <0 for any x except the origin by

substituting (3) for (2), the origin of the system may
be regarded as asymptotically stable unless the
denominator of the rational function, x’Mg , is equal

to zero. Here, we define a terminology called a
singular hyperplane.

Definition 2.1 (Singular Hyperplane): The set of
points where the denominator of the control input (3)
is equal to zero is the singular hyperplane generated
by control input (simply singular hyperplane). That is,
for given system (1) with control input (3)

Sz{xeRZ|x'Mg=0,x¢O} )

is the singular hyperplane with Mg as its normal
vector.

To avoid a situation where the trajectory of the
solution meets the singular hyperplane, the control
input should be changed by selecting another M
before the state trajectory arrives at the singular
hyperplane. Unfortunately, the asymptotic stability of
the origin cannot be guaranteed by only avoiding the
singular hyperplane since there is the discontinuity of
Lyapunov functions induced by replacing M and an
unexpected behavior caused by switching action.
Hence, it is necessary to develop a method which
makes the trajectory avoid the singular hyperplane
and stabilizes the system simultaneously in spite of
unexpected behaviors caused by switching action as
well as the discontinuity of Lyapunov functions.

3. SWITCHING CONTROL LAW

3.1. Control law
In this section, we propose a switching control
scheme which stabilizes a class of 2nd order nonlinear

systems given in (1) by means of the contro! law
given in (3). Consider again a system in (1) with a
discontinuous control input as follows

{)'cl = fi(x) +u,

£ = £, (2) -

u= [x'M, f(x) - x'M,x], k ={1,2},

xX'M,g

where g is normalized into [1 0] to simplify the
problem. The control input » differs from (3) in that it

is not continuous anymore because M, in (5) is to be

changed according to switching signal.
Note that # is well defined around the origin from

the fact that the convergence rate of the numerator of
the control input is faster than that of the denominator
because the orders of the numerator and the
denominator with respect to zero are 2 and 1 around
the origin, respectively.

3.2. Switching rules
As mentioned in Section 2, # should be changed by

switching M; among appropriate candidates of positive
definite matrices just before the trajectory of the
solution arrives at the singular hyperplane defined in
Definition 2.1. The problems are deciding when to
change M, and how to determine appropriate M,.

With respect to the first problem, which is when it
is the right time to change M, is related to the
condition that generates switching signal. In this paper,
we present two switching rules which trigger a
switching action when at least one of them is satisfied.

Switching Rule 1: A, is switched whenever the

trajectory is sufficiently close to the singular
hyperplane as follows.
| Ix'ngI
———— < £ 6)
”x“z ”ng”z

for some constant £ >0, where |x'M, g|/|| M, gl|2
means the distance between the current state x and

the plane whose normal vectoris M, g. g

]x’Mg[
Il

I,

0

Fig. 1. The switching rule by the ratio of distances.
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Fig. 2. Distance trigger carries chattering around the
origin.

(xx 1) (xx8)<0

(xx%)(xx8)>0

Fig. 3. Motion direction of the trajectories.

This condition implies that if the ratio of the
6distance from the current state to the origin and to
the singular hyperplane is less than ¢, a switching

action occurs as shown in Fig. 1.

The reason for choosing such distance ratio is
chosen as a trigger of a switching action is to avoid
chattering around the origin when simple distance
trigger is employed as shown in Fig. 2.

We need the other switching condition as well as
(6) to guarantee the invariant property of a sector as
follows.

Switching Rule 2: M, is switched whenever the
trajectory does not head for the current activated
singular hyperplane. Whether the trajectory heads for
the current activated singular hyperplane or not is
checked by

(xxx)'(xx S) <0, (7)

where S, denotes the tangent vector of the
corresponding singular hyperplane and x denotes the
cross product of vectors. g

As shown in Fig. 3, (x><)'c)'(x><§k) is larger than

0 when the trajectory of the solution approaches to a
singular hyperplane, while it is less than 0 when the
trajectory recedes from a singular hyperplane. This
condition indicates that the activated singular
hyperplane always lies in front of the motion direction
of the trajectory. By switching rules given in (6) and
(7), we can show that the sector consisting of singular

hyperplanes is an invariant set in Section 5.
With respect to the second problem, which is how
to determine appropriate M, , is more complicated

because the switching action may lead to unexpected
behaviors in the system such as chaotic transient
response and even instability [8-10,12]. For example,
a switched system consisting of stable subsystems
may become unstable under a certain switching rule
[9,15].

In this paper, selecting M, is directly related to the

singular hyperplanes because M, g is the normal
vector of the singular hyperplane. Thus, we need to
define first some terminologies as follows: attraction
region (AR), zero attraction region (ZAR), and sector.

Definition 3.1 (Attraction Region): The region
where the product of x,and the drift scalar system

f>(x) in (5) is less than zero is called the attraction
region for x2 . That is,

AR ={xeR’|x, f,(x) <0} (8)

is the attraction region of the system (5) with respect
to x,.

On the attraction region, the trajectory always heads
toward the x, axis because x, and X, = f,(x) have the

opposite sign each other.

Definition 3.2 (Zero Attraction Region): The
attraction region in touch with the origin is called a
zero attraction region and is abbreviated as ZAR. O

Definition 3.3 (Sector): Each unilateral region
between below a singular hyperplane and above the
other one is called the sector generated by those
singular hyperplanes and is referred simply as sector.C

Consider the situation where M, and M, are

assigned for which the sector consisting of singular
hyperplanes determined by M, and M, lies on ZAR. If

the sector is an invariant set, the trajectory of the
solution converges to the origin once it enters the
sector.

Remark: In case of 2nd order systems, the existence
of available ZAR in Step 1 can be easily checked by
plotting AR on phase plane. We propose a criterion for
the existence of available ZAR in Section 4 because it
is hard to plot AR in case of higher order systems.

Table 1. The procedure of the proposed control scheme.

Step 1. Check the existence of an available ZAR of
a given system.

Step 2. Assign M, and M, for which the sector lies
on ZAR at least around the origin.

Step 3. Switch the control laws in (5) according to
the switching rules, (6) and (7).
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Fig. 4. Attraction region for x, =x, +x, + X, = XX, .

Remark: To assign sectors into ZAR at least around
the origin in Step 2, it is sufficient to put the singular
hyperplanes which is composed by M, between the
tangent planes of ZAR at the origin. More systematic
procedure to assign M, is discussed in Section 4.

For example, consider a system whose drift scalar
system is given as follows.

. 2 2
X, =X +X, X XX,

Plotting AR and ZAR on the phase plane for this
system yields Fig. 4. This system has ZAR which are
suitable for assigning sectors consisting of two
singular hyperplanes, S, and S, .

In this procedure, the control law is directly
determined by the singular hyperplanes as shown in
(5). Switching action between the control laws is
employed to enclose the trajectory of the system in the
sector. Then, each singular hyperplane plays the role
of a barrier which does not permit the trajectory to
cross them. The reason for this phenomenon will be
discussed later by showing the sector is an invariant
set. Finally, the terminal point of the trajectory admits
only the origin because the trajectory never escape
from the corn shaped sector as well as x, converges to

zero on the sector included in ZAR.
4. APPLICABLE SYSTEMS

As mentioned in Table 1, an available ZAR must
exist to apply the proposed switching control scheme.
In this section, we propose a criterion of whether such
ZAR exists or not. First, employ a terminology called
tangent cone as follows.

Definition 4.1 (Tangent Cone): Consider a subset

R c R"and a vector x, € R. A vector y € R"is said to
be a tangent vector of R at x, if either y =0 or there
exist a sequence {x,{} < R and a non-negative sequence

{a,} such that

{xk-»xo
a,(x, —x,) > y.

Fig. 5. Tangent cone of region and boundary.

The set of all tangent vectors of R at x; is called the
tangent cone of R at x,, and is denoted by T, (x,). O

Fig. 5 shows the geometric description of the
tangent cones of a region and its boundaries, where

R and R, are the smooth boundaries of R. Ata
point on a smooth boundary such as x, , the boundary
of the tangent cone of R at x, coincides with the
tangent cones of R, at x, . On the other hand, at a cusp
point on the intersection of different boundaries such
as x,, the tangent cone of R at x,has volume i.e. the
tangent cones of R, and R, at x, are linearly
independent. However, at a cusp point such as x,, the
tangent cone of R at x, has no volume i.e. the tangent
cones of R and R, at x, are linearly dependent.

ZAR should have volume in the vicinity of the
origin to assign sectors included in ZAR. To check the
existence of an available ZAR, it is sufficient to
evaluate whether or not the tangent cone of the
corresponding ZAR at the origin has volume. That is,
there exist an available ZAR when the tangent cones
of {x|x, =0} and {x|x, =0} at the origin are linearly
independent because {x|x, =0} and {x|x, =0} are
the boundaries of ZAR by Definition 3.1 and 3.2 as
well as the origin is a cusp point of ZAR. Note that
the normal vector of all tangent cones of {x|x, =0} is
[0 1] because {x|x, =0} is the x, axis itself.

For example, consider the following system

)

{)’C, =-sinx, +u

X, =Xx.

The normal vectors of tangent cones of {x|x, =0}

and {x| x, =0} for the above system at the origin are

o] ol ] o)
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2

Ti0 (0)

J
,; =2 ATy 4
T, 4(0) /A‘l

>
TZ:IR?. (0)

(ZAR]2)

Fig. 6. Tangent cone and ZAR of %, =x,.

In this case, there exist available ZAR because the
normal vectors are linearly independent each other.

Fig. 6 depicts ZAR and the tangent cone of the system
(9) at the origin, By Definition 3.1 and 3.2, ZAR is
equivalent to the region where x, and x, have the

opposite sign each other, which corresponds to the
tangent cone in the vicinity of the origin. Especially,
in case that the dynamics of %, is linear, the tangent
cone coincides with zero attraction region as shown in
Fig. 6.

In general, the tangent cone at the origin does not
coincide with ZAR. For the following system

(10)

o2
{xl =Xx,+x, tu
_ 3 2
X, =X X%, +X5,

the normal vectors of tangent cones of {x]x2 :0}

and {x | %, = O} for the system at the origin are

o) Lo

which are equal to the case of the system (9). In this
case, there exists available ZAR, while the tangent
cone and ZAR does not coincide with each other

because x, dynamics is nonlinear as shown in Fig. 7.
The next example shows that the absence of ZAR
implies that the tangent cone at the origin has no
volume. This in turn means the fact that the tangent
cone has volume is a sufficient condition for the
existence of an available ZAR. For the system

an

X =x%+x +u
2
X, =X, +x,X2,

the normal vectors of tangent cones of {x [x, = 0} and
{x|%, =0} for the above system at the origin are
linearly dependent as follows

HEH!

ZAR2)

Fig. 7. Tangent cone and ZAR of %, =x, +x'x, +x; .

(AR 1)
To(xz =0)&To(xz =0)

s

-4 -2 2

-1

-2

-3
Fig. 8. Tangent cone and ZAR of x, =x, +x,x7.

In this case, we can not assure the existence of ZAR
Actually, ZAR for this system does not exist as shown
in Fig. 8.

To determine that the proposed method is
applicable to a given system, it is necessary to check
whether or not the tangent cone of the system at the
origin has volume. And to obtain appropriate M, , it is

sufficient to assign a sector in the tangent cone.
5. STABILITY ANANLYSIS

In this section, we discuss the stability issue of the
proposed switching control system. As mentioned in
the previous section, the state of the scalar system
corresponding to drift dynamics, f,(x), converges

to zero on ZAR. Hence, if the trajectory stays on ZAR,
we can assert the stability of the scalar system i.e. the
drift dynamics on which the control input is not
directly imposed is asymptotically stable. Furthermore,
if the trajectory stays on a sector included in ZAR, we
can assert that both states, x, and x,, converge to

zero from the invariant property of the sector
consisting of the singular hyperplanes. The following
theorem shows that a sector consisting of singular
hyperplanes is an invariant set.

Theorem 5.1: Assume that a switching action
occurs whenever at least one of switching rules given
in (6) and (7) is satisfied. Then, a sector consisting of
the singular hyperplanes determined by M, is an
invariant set. (This is proven in Appendix A) O

Note that Theorem 5.1 states that the sector is an
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invariant set regardless of whether the sector lies on
AR or not. The trajectory of the solution converges to
the origin when it stays in the sector on ZAR.
However, the trajectory diverges when it stays in the
sector on non-AR.

Using this invariant property of sectors, we can
show the asymptotic stability of the origin as the
following theorem from the fact that the terminal
point of the trajectory admits only the origin because
once the trajectory enters a corn shaped sector, it can
not escape from there and consequently x, converges

to zero on the sector included in ZAR.
Theorem 5.2 If the tangent cones of {x|x, =0}

and {x|x, =0} at the origin for a given system are

linearly independent and the switching rules in (12)
are applied to a given system, then the origin of the
proposed switching control system is asymptotically
stable. (This is proven in Appendix C) O

Note that this result addresses local stability. If both
sectors are entirely included in ZAR, the origin of a
given system is globally asymptotically stable.

6. COMPARISON WITH THE EXISTING
METHODS

The proposed switching control method can handle
a class of nonlinear systems which are difficult to
stabilize with the existing methods. In this section, we
compare the proposed scheme with the existing
methods, in other to demonstrate the advantage of the
proposed method.

6.1. Comparison with backstepping

Backstepping approach is not appropriate to the
system (10) because the nonlinear terms of X,
dynamics is not a function of only x,, i.e. it is not a
triangular form.

On the other hand, the proposed switching control
method is applicable to this system because the
tangent cones, T,,,,(0) and 7,,,,(0) of the system at

the origin has volume or the tangent cones, T, _;, (0)

and T,

{£,=0
shown in Fig. 7. Therefore, the system (10) can be
locally asymptotically stabilized by the proposed
switching control method. The numerical result is
given in Example 1 in Section 6.2.

,(0) are linearly independent each other as

6.2. Comparison with feedback linearization
Consider the system (10) rewritten as follows

. 2
{xl =XX, +X, +u
— 3 2
X, =X +XX +Xx;.

To apply input-output feedback linearization to this

system, define x, as output and derive it as follows.

y=x,:=¢(x), ‘
0 O 0, 0, 0 o[
y—a—x- . f(x)+ » gu, o g —[0 1],:0}—0.

0
Define ¢,(x) :=a;¢'f(x) =X X%, X,
x

. a¢2 . 6¢2 a¢2
= —_— = — + —_—
Y ox x Oox /) ox &

= (1+3x12x2)(x12x2 +x2>+(xl3 +2x2)(x1 +Xx, +x22)
+(1+3x12x2)u =,

y=v.

The resulting control input u is not defined where

1+3x’x, =0. So, the trajectory can not cross this

singularity as shown in Fig. 9.

On the other hand, the controllable region is
extended by means of the proposed method as shown
in Fig. 10. The numerical result is given in the
following Example 1.

Example 1: Consider the system (10) whose
attraction region is given in Fig. 7. We can assign
appropriate singular hyperplanes because the tangent
cones of the system at the origin are linearly
independent from [0 1], [1 0] as their normal vector.

In this case, the singular hyperplanes, S, and S, whose
normal vector are [5 4]' and [l 2]"are assigned for the

N

J——t NI

l+3xl3xz =0

W

I
S

g

Fig. 9. Singularity caused by feedback linearization.

Ty (O)‘/Z{ o

Fig. 10. ZAR of the system (10).
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Fig. 11. The trajectory and control input of Example 1
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Fig. 12. The trajectory and control input of Example 1
with initial point at (3, 2).
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Fig. 13. The trajectory and control input of Example 1
with initial point at (-1.5, -0.2).

sectors to be included in ZAR as shown in Fig. 10. The
corresponding positive definite matrices are assigned
as M, =[5 4; 4 4], M, =[1 2; 2 5] because the first

column of each matrix is the normal vectors of
respective singular hyperplanes, and the distance
ratio ¢ in (6) is set as 0.1.

Fig. 11 depicts the trajectory of the solution with
the initial point at (-1, -2). The trajectory from (a) to
(b) is dominated by S,, and dominated by S, after
(b). Finally, the trajectory enters the sector consisting
of §, and S, and converges to the origin.

Compared with feedback linearization, this result
shows that the proposed switching control extends the
region of attraction. For example, when feedback
linearization is applied to the system, the trajectory
with the initial point at (-1, -2) can not converge to the
origin because the trajectory of the solution can not
cross the singularity as shown in Fig. 9. However, all
trajectories with arbitrary initial points with the
exception of the case where they start in non-AR on

the fourth quadrant converge to the origin by the
proposed switching control method.

Note that non-AR laid across the first and second
quadrants is the region of attraction. The reasons are
that the trajectory with the initial point on such non-

AR heads up during from (a) to (b) because |x, |
increases in that region as shown in Fig. 12, and
further the trajectory approaches S, like from (b) to

(c) because the singular hyperplanes play the role of
an attractor (See Appendix B). Finally, the trajectory
enters the sector and converges to the origin. In
addition, non-AR on the third quadrant is also the
region of attraction by the similar analysis as shown in
Fig. 13.

6.3. Comparison with control Lyapunov function
Consider the system (9) rewritten as follows
{xl =-sinx, +u

X, =X,.

Try an energy function V(x)=x/+x.. The time

derivative of the function is
V(x)=2x (-sinx, +u)+2xx,
=2x,(x, —sinx, +u).
This function is not a Lyapunov function because

V=0 when x, =0. After some trial and error, try

another candidate ¥ (x)=x7 +2x + 2x,x, .
V(x)= (2x) +4xy ) x +(2x) +2x, ) (—sinxy +u).

When x, +x, 20, there exist u such that ¥ <0 .
When x, +x, =0, ¥ =-2x’ <0 unless x, =0, which
can only happen at x, =—x,=0 . Therefore the

asymptotic stability can be achieved by the control
input from this Lyapunov function.
This result thanks to the simple dynamics of X, .

If x, dynamics is given in more complicated form, it

—
!
vy
\ T{xz:0§ (0)
TN
~ - :'.' A
i
-4 —2/ &\"“,4-.2~‘ !
IO 1y Mg=0
tuesy (0) <4 T (0) *8
. V ¥M,g=0

Fig. 14. Singular hyperplanes on the tangent cone.
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would be not easy to find an appropriate Lyapunov
function. On the other hand, with the proposed
method, one need not go through trail and error to find
a Lyapunov function and the asymptotic stability can
be easily achieved by assigning singular hyperplanes
on the tangent cone as shown in Fig. 14. The
numerical result is given in Example 2 in Section 6.4.

6.4. Comparison with sliding mode control
Consider the following system

{x, =—a sinx, —a,x, +u

X, =x.

If the switching function is s(t) = x,(t) + mx,(¢), the
reduced order sliding mode is

x () =-mx,(t)y or X,(t)=-mx,(),

where m >0 . The resulting control input which
stabilize the system is given wu(t)=u,(t)+u,(f) ,
where u, =a,x, —mx, and u,=kx, —nsgn(s(r)).

This result also thanks to the simple dynamics
of %, as in the case of control Lyapunov function

approach explained in Section 6.3. Furthermore,
sliding mode control always carries chattering which
is undesired phenomenon as shown in Fig. 15.

In contrast, the proposed method can be applied easily
by assigning singular hyperplanes on the tangent cone

without worrying about chattering because |x2|
always decreases in the sector as shown in Fig. 16.

-4 -2 2

-1
X +mx; =0

-2

Fig. 15. Chattering in sliding mode control.

L

(ZAR 1)
-4 -2 2 (ZARM2)
=Y x'Mig s}
-2
xMyg =0

-3

Fig. 16. Trajectory by the proposed control.

The numerical result of this system is similar to that
of the system (9) in Example 2.

Example 2: Consider the system (9) whose
attraction region is given in Fig. 6. We can assign
appropriate singular hyperplanes because the tangent
cones of the system at the origin are linearly
independent with [0 1], [1 0] as their normal vector.
In this case, the singular hyperplanes, S, and S, whose
normal vector are [5 4]' and [1 2]"are assigned for the
sectors to be included in ZAR as shown in Fig. 14.
The corresponding positive definite matrices are
assigned as M, =[5 4; 4 4], M, =[12; 2 5], and
the distance ratio ¢ in (6) is set as 0.1.

Fig. 17 depicts the trajectory of the solution with
initial point at (-3, -3). The trajectory from (a) to (b) is
dominated by S,, and dominated by S, after (b).
Finally, the trajectory enters the sector consisting of
S, and S, and converges to the origin.

The next example shows a case where control
Lyapunov function and sliding mode control are not
suitable for stabilizing the system.

Example 3: Consider the following system whose
attraction region is given in Fig. 4.

. 2
{x]—x1 —-XX, +u

. 2 2
X=X +X,+X —XX,.

As shown in Fig. 4, we can assign singular
hyperplanes for the sectors to be included in ZAR
because the tangent cones of the system at the origin
are linear independent with [1 0] and [1 1] as
their normal vectors. In this case, the singular
hyperplanes, S, and S, whose normal vector are
[54] and [1 2]' are assigned for the sectors to be
included in ZAR. The corresponding positive definite
matrices are assigned as M, =[11;13], M,=
[12; 2 5], and the distance ratio £ in (6) is set as
0.1.

Fig. 18 depicts the trajectory of the solution with
initial point at (1, 1). By the proposed switching
control, the sector is an invariant set where the
trajectory can not escape from. Unlike sliding mode
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Fig. 17. The trajectory and control input of Example 2.
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Fig. 19. The trajectory and control input of Example 3.

control, the proposed switching control system does
not carry chattering because |x2| always decreases in

the sector on ZAR as time elapses. Furthermore, all
trajectories of this system with arbitrary initial point
converge to the origin because ZAR include both
sectors entirely as shown in Fig. 4.

There is oscillation in the control input in Fig. 18,
which is not a desired phenomenon. We can avoid
such oscillation by increasing the interval between the
singular hyperplanes. Fig. 19 shows the case where
the normal vectors of the singular hyperplanes are
assigned as [1 1] and [1 3]', whose interval is wider

than that of Fig. 18. The corresponding positive
definite matrices are assigned as M, =[11;1 3],

M, =[1 3; 3 10], and the distance ratio £ in (6) is set
as 0.1.

7. CONCLUSIONS

In this paper, we proposed a switching control
method for a class of nonlinear systems which can not
be handled with the existing methods such as feedback
linearization, backstepping, control Lyapunov function
approach, and sliding mode control.

The proposed method is similar to the inversion-
based control such as feedback linearization in respect
that some nonlinear dynamics are cancelled by control
input. In addition, it is similar to the constructive
Lyapunov function method such as backstepping in
that the control law is directly induced from the
derivative of Lyapunov functions. However, unlike
feedback linearization, this method does not require
the rank conditions and the involutiveness, and

contrary to backstepping, it is applicable to systems
that do not have triangular forms. This method
provides a simple way to design the control law
comparing with control Lyapunov function approach
and sliding mode control.

The proposed switching method introduces new
concepts such as ZAR, sector, and tangent cone to
show the asymptotic stability of the origin. Using
tangent cone at the origin, the applicable systems can
be easily checked. The sector on ZAR provides
extended region of attraction because the trajectory in
such sector never escape from there.

APPENDIX
A. Proof of Theorem 5.1
When the trajectory of the solution approaches a
singular hyperplane,

(xx)'c)'(xxb:k)>0

because xxx and xx S, have the same direction

which heads up as shown on the left side of Fig. 3.
However, when the trajectory recedes from a singular
hyperplane,

(xxx)(xx8,)<0

because xx x and x x §k have the opposite directions

which head up and down, respectively as shown on
the right side of Fig. 3. Hence, by the switching rule
given in (7) the activated singular hyperplane always
lies in front of the motion direction of the trajectory.
That means the trajectory of (5) approaches to the

current activated singular hyperplane S, as @ in

Fig. 20.
Consider the situation just before switching action
in the vicinity of S, because we can assign the

distance ratio £ in (6) to be arbitrarily small. Then,
the inner product of the normal vector of S, and the

current vector field Xeo is

[, 7,]%p <0, (12)

where x» means the vector field when the current

Fig. 20. The trajectory within sector.



Switching Control for Second Order Nonlinear Systems Using Singular Hyperplanes 133

singular hyperplane of the control input is S,. Hence,
the absolute value of the angle between [a, 7,]° and

xo is larger than 90 degrees.
We will show that [a, 7,]¥o>0 when switching

from S, to S, occurs in the vicinity of S, from the fact
of [a, y,]%e<0 , [a, y,]%0[a, ¥,]%2<0 and that
e, 7,]%2<0 when switching from S, to S, occurs in
the vicinity of S, from the fact of [a, ¥ ]X0>0,
[, 7,]%e [, y,)%0<0. Hence, the absolute value of
the angle between [a, y,] and Xois less than 90
degrees and that of between [, y,] and xe is greater
than 90 degrees imply that the trajectory heads for the
interior of the sector as shown in Fig. 20 and Fig. 21,
respectively.
Rewriting [a, 7,]Xeyields
xl

[az 72][-:) =0L,X + X, , (13)
@

Xy

where the proposed control law in (5) is applied as
follows.

% = f(x)+u

0
= '1 —x'M,| |x,—x'M,x|.
x'M,g 1

As it is in the above manipulation, the nonlinear
term f,(x) is canceled, which is one of useful features

of the proposed method. Replacing %, in (13) by this
result yields

) a B U .
[a, 72]x®=x’Mzgl:—xM{l}cz—xsz}+72x2

When switching occurs, the singular hyperplane
S, 1is replaced by S,. Hence, the vector field xe
is also changed into Xxo. The inner product of the
normal vector of S, and Xxo is

%, . .

[az 72] . =X T Y%y,

@®

X2

where x, =[-x'M,[01]'x, - x'M,x]/x'M,g .

Here, consider the product of (14) and (15) as follows.

2 72]’&@ [ 72]*@

1 .| 7
=——%, —a,x
xMg-xM,g -,

2
M, i x‘fz M, 3%, 72 —a,x ;.
XX, X -a,

Note x,in (14) and (15) is equal to each other because
the switching action affects only ‘%, but x, .

Since the switching action occurs in the vicinity of
Sy ={xeR’|a,x, +y,x, =0} and in an ideal case, it

does not matter to consider that the switching action
occurs on the singular hyperplane because the value
of £ in (6) can be chosen to be arbitrarily small. So,

replacing x, with —(y,/a,)x, yields (16)<0
[, 7)1 [@ 7.]%

*‘—1_— 2 ; 2“2/327722 n ’ }/_22 s
TR (x,+%) “ah {[az 5 }Q] v (e -7 )}
(16)

because the current state lies inside the sector when
switching occurs i.e. x'M,g-x'M,g <0and a,f, >0,

af -y >0, af,—y:>0 because M, M,>0.
Hence, this result implies that

[az 72])&@ >0 (17)

from the facts [@, ¥,]%2 <0 in (12) and (16)<0. That
means the absolute value of the angle between
[a, 7,] and Xois less than 90 degrees. Therefore,
the trajectory heads for the interior of the sector by
means of switching into S, in the vicinity of S, .

In the opposite case of switching into S, in the

vicinity of S, we can prove that
[al y1]x®<0 (18)

by the same manner. That means the absolute value of
the angle between [¢, #,] and Xeis greater than 90
degrees as shown in Fig. 21.

Fig. 21. The trajectory can not cross S;.
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These resuits of (17) and (18) imply that once the
trajectory enters the sector consisting of S, and S,,

it can not escape from the sector by switching action.
Therefore, the sector is a positively invariant set.  [J

B. Preliminary for Appendix C

Lemma: Each singular hyperplane plays a role of
an attractor and has a temporary invariant set what is
called the Lyapunov level surface.

Proof: Consider a fixed singular hyperplane. If
there is no switching action in the future, the
trajectory converges to the origin without touching the
singular hyperplane because the time derivative of the
Lyapunov function corresponding to the singular
hyperplane is ¥, = -x'M,x < 0. On the other hand, if
there is a switching action in the future, at that time,
the trajectory reaches the singular hyperplane with the
exception of the origin. In both cases, the trajectory
converges to the singular hyperplane. As long as a
new singular hyperplane is not generated by a
switching action, the trajectory can not escape from
the Lyapunov level surface V; = x'(¢,)M, x(z,) because

V,=—x'M,x<0 forte[t, t,,). O

C. Proof of Theorem 5.2

Consider the Lyapunov level surface L,

corresponding to the singular hyperplane S,. By the
first assumption of the theorem, there exist available
ZAR which includes sectors at least around the origin.
Hence, there is a ball B, that includes L, when the

initial point of the trajectory is sufficiently close to the
origin, where the radius of B, is given by the shortest

distance from the origin to the intersection of sectors
and the boundary of ZAR.
By Lemma in Appendix B, the current singular

hyperplane S,acts as an attractor. So, the trajectory
reaches §,in finite time and belongs to the sector
consisting of S, and S,. Note that the motion of
the trajectory in the opposite direction is not permitted
because x, increases on non-AR in Fig. 22. By
switching rules (11) in Theorem 5.1, once the
trajectory enters the sector, it cannot escape form the

sector. Here, define a new ball B,, where the radius of
B, is given by the distance form the origin to the state
when the trajectory reaches ;. Then, B, belongs to
B;. By the same manner, define balls whenever the
trajectory strikes S, as illustrate in Fig. 23.

Because each ball belongs to the previous one, these
balls including the trajectory shrink to the origin as
time elapses. Therefore, all trajectories starting within

B converge to the origin.
Intuitively speaking, this theorem states that the

Fig. 23. Each ball belongs to the previous one.

terminal point of the trajectory admits only the origin
because the trajectory cannot escape from the corn
shaped sector as well as x; converges to zero on the
sector included in ZAR. O
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