• Title/Summary/Keyword: nonlinear systems control

검색결과 2,436건 처리시간 0.037초

시선 안정화 시스템의 고 정밀 적응제어 (Adaptive High Precision Control of Lime-of Sight Stabilization System)

  • 전병균;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1155-1161
    • /
    • 2001
  • We propose an adaptive nonlinear control algorithm for high precision tracking and stabilization of LOS(Line-of-Sight). The friction parameters of the LOS gimbal are estimated by off-line evolutionary strategy and the friction is compensated by estimated friction compensator. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Lyapunov stability theory, and its convergence is guaranteed under the limited modeling error or torque disturbance. The performance of the pro-posed algorithm is verified by computer simulation on the LOS gimbal model of a moving vehicle.

  • PDF

Direct Just-in-time Methods for Nonlinear Control Design

  • Qiubao Zheng;Kim, Hidenori ura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.93.4-93
    • /
    • 2001
  • Based on input and output data pairs of nonlinear systems, this paper proposes a simple and effective Just-In-Time (JIT) method, called Direct JIT Control, for nonlinear control design. It uses an inverse model of controlled plant to compute an initial control action, and then adapts the initial control action by adding a fine-tuning control action, depended on the errors between the real outputs and the expected reference signals. Meanwhile, the proposed JIT method accomplishes the adaptation of the inverse model just simply by means of the refreshment of input and output data pairs. In addition, the JIT modeling technique guarantees this method to obtain an approximate inverse model of the controlled nonlinear plant in the neighborhood of a query. Based on a ...

  • PDF

Nonlinear pH Control Using a Three Parameter Model

  • Lee, Jie-Tae;Park, Ho-Cheol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.130-135
    • /
    • 2000
  • A two parameter model of a single fictitious weak acid with unknown dissociation constant has been successfully applied to design a neutralization system for many multi-component acid streams. But there are some processes for which above two parameter model is not satisfactory due to poor approxmation of the nonlinearity of pH process. Here, for etter control of wide class of multi-component acid streams, a three parameter model of a strong acid and a weak acid with unknown dissociation constant is proposed. The model approximates effectively three types of largest gain variation nonlinearities. Based on this model a nonlinear pH control system is designed. Parameters can eeasily estimated since their combinations appear linearly in the model equations and nonlinear adaptive control system may also be constructed just as with the two parameter model.

  • PDF

리커런트 신경 회로망을 이용한 비선형 시스템의 입출력 선형화 및 제어 (Input-Ouput Linearization and Control of Nunlinear System Using Recurrent Neural Networks)

  • 이준섭;이홍기;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.185-188
    • /
    • 1997
  • In this paper, we execute identification, linearization, and control of a nonlinear system using recurrent neural networks. In general nonlinear control system become complex because of nonlinearity and uncertainty. And though we compose nonlinear control system based on the model, it is difficult to get good control ability. So we identify the nonlinear control system using the recurrent neural networks and execute feedback linearization of identified model, In this process we choose the optional linear system, and the system which will have to be feedback linearized if trained to follow the linearity between input and output of the system we choose. We the feedback linearized system by applying standard linear control strategy and simulation. And we evaluate the effectiveness by comparing the result which is linearized theoretically.

  • PDF

로봇의 비선형 임피던스 힘제어에 대한 연구 (On analysis of nonlinear impedance force control for robot manipulators)

  • 정슬;이지홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.560-563
    • /
    • 1997
  • The conventional impedance control has been known to have the following problems: it has lack of specifying force directly and unknown environment stiffness has to be known priori in order to specify the reference trajectory. In this paper, new impedance force control that can control a desired force directly under unknown stiffness is proposed. A new nonlinear impedance function is developed based on estimation of unknown stiffness from force and position measurements. The nonlinear characteristics of the proposed impedance function are analyzed based on unknown environment position. Simulation studies with robot manipulator are carried out to test analytical results.

  • PDF

Nonlinear Control of General System based on a Model with Coefficients of State-Depended Representation

  • Nakamura, Masatoshi;Zhang, Tao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.76.1-76
    • /
    • 2002
  • This paper addresses a method for nonlinear controller construction for a general nonlinear system with the separation of controller construction and manipulated values generation. The nonlinear system model is firstly expressed with the coefficients of state-depended representation. The nonlinear control is designed without any approximation based on the model with state-depended representation. At the stage of controller implementation for the nonlinear system, the manipulated values are calculated accurately by use of an algorithm of the numerical analysis. The numerical error for calculating the manipulated value can be reduced to zero by selecting the sampling interval being a small val...

  • PDF

Design of a Sliding Mode Controller with Nonlinear Boundary Transfer Characteristics

  • Kim, Yoo K.;Gi J. Jeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.164.2-164
    • /
    • 2001
  • Sliding mode control (SMC) with variable nonlinear boundary layer is proposed. Two Fuzzy logic controllers (FLCs) are used to decide both boundary layer thickness and nonlinear interpolation using sigmoid function in the boundary layer. The nonlinear interpolation in the boundary layer suing FLC reduces stead state error and chattering. Sigmoid function is used to nonlinear interpolation in the boundary layer sigmoid function parameter with FLC. To demonstrate its performance, the Proposed control algorithm is applied to a simple nonlinear system.

  • PDF

Adaptive fuzzy learning control for a class of second order nonlinear dynamic systems

  • Park, B.H.;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.103-106
    • /
    • 1996
  • This paper presents an iterative fuzzy learning control scheme which is applicable to a broad class of nonlinear systems. The control scheme achieves system stability and boundedness by using the linear feedback plus adaptive fuzzy controller and achieves precise tracking by using the iterative learning rules. The switching mode control unit is added to the adaptive fuzzy controller in order to compensate for the error that has been inevitably introduced from the fuzzy approximation of the nonlinear part. It also obviates any supervisory control action in the adaptive fuzzy controller which normally requires high gain signal. The learning control algorithm obviates any output derivative terms which are vulnerable to noise.

  • PDF

Robust Predictive Control of Uncertain Nonlinear System With Constrained Input

  • Son, Won-Kee;Park, Jin-Young;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.289-295
    • /
    • 2002
  • In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC) with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI. To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible single link manipulator are performed.

Nonlinear FES Control of Knee Joint by Inversely Compensated Feedback System

  • Eom Gwang-Moon;Lee Jae-Kwan;Kim Kyeong-Seop;Watanabe Takashi;Futami Ryoko
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.302-307
    • /
    • 2006
  • The aim of applying Functional Electrical Stimulation (FES) is to restore a person's motor function by directly supplying the controlled electrical currents to the site of the paralyzed muscles. However, most clinically utilized FES systems have adapted an open-loop control scheme. Recently the closed-loop control scheme has been considered for setting up the FES system, but due to the inherent nonlinearities in the musculoskeletal system, the nonlinearities were not fully compensated and it caused the oscillatory responses for tracking the output variables. In this study, a nonlinear controller model that has two inverse compensation units is proposed with the compromising feedback linearization method and this will eventually be used to design the FES control system for stimulating a knee joint musculoskeletal system.