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Abstract

This paper presents an iterative fuzzy learning control
scheme which is applicable to a broad class of nonlin-
ear systems. The control scheme achieves system stabil-
ity and boundedness by using the linear feedback plus
adaptive fuzzy controller and achieves precise tracking
by using the iterative learning rules. The switching mode
control unit is added to the adaptive fuzzy controller in
order to compensate for the error that has been inevitably
introduced from the fuzzy approximation of the nonlin-
ear part. It also obviates any supervisory control action
in the adaptive fuzzy controller which normally requires
high gain signal. The learning control algorithm obvi-
ates any output derivative terms which are vulnerable to
noise.

1 Introduction

There have been substantial amount of research works
in the development of various iterative learning control
methods. The concept of iterative learning control has
been introduced in order to improve tracking performance
in an iterative manner by attempting to execute a desired
motion repeatedly. The control effort in each attempt is
improved using the tracking error signals obtained from
previous trial. Arimoto et al. [2] proposed a general iter-
ative learning control method for a class of nonlinear sys-
tems whose input and output gain matrices are of linear
time-invariant form. In their scheme, the time derivative
of the current output error is used to update the learning
control input for the next iteration. Ahn et al. [1] and
Jang et al. [4] proposed iterative learning control laws
based on the relative degree of nonlinear system intro-
duced by Isidori [3]. Their controllers still uses derivatives
of output errors and its convergence condition is implic-
itly coupled with the decoupling matrix of the nonlinear
system. Kuc and Lee [5] presented a simple and efficient
adaptive learning control law for robot systems based on
the linear parametrization technique. In their control
scheme, they updated not only the learning control input
but also the parameter estimates. This control scheme,
however, is not extendable to general nonlinear systems
for which a convenient linear parametrization form is not
available in general. In order to overcome the problem, a
fuzzy logic representation technique is introduced in this
paper where the nonlinear system is approximated by a
fuzzy logic system which can be formulated in the lin-
ear parametrization form using the fuzzy basis function
approach.

The research on the fuzzy logic control [8] has been
motivated by papers on the linguistic approach and the
system analysis using the theory of fuzzy sets [12]. Fuzzy

logic, which forms the basis of fuzzy control methods, is
similar to human thinking and natural language repre-
sentation, and provides effective means of capturing ap-
proximated and inexact nature of the real word. From
a mathematical point of view, a fuzzy logic system is
in fact a mapping from the input space to the output
space that approximates the nonlinear function within
a given accuracy [7]. It describes the nonlinear func-
tion by using the linguistic descriptions obtained either
from the experts or from the experimental results, and
uses the fuzzy inference technique to obtain the results.
Wang [11] introduced the universal approximation the-
orem for a class of fuzzy logic systems: any continuous
or L, nonlinear function can be approximated by a fuzzy
logic system with arbitrary accuracy. This fact was exten-
sively used in his other paper to develop adaptive control
methods for a class of nonlinear systems [10]. Since the
universal approximation theory holds only in the com-
pact set, he added yet another supervisory control term
to keep the state of the system within the compact set.
Su and Stepanenko [9] presented an adaptive fuzzy con-
troller with switching control technique and proved that
the system errors converge to zero.

Applying the fuzzy logic technique to the iterative
learning control method, we propose an adaptive fuzzy
learning control scheme in this paper which is applica-
ble to a broad class of nonlinear dynamic systems. The
adaptive fuzzy control block compensates for the nonlin-
ear part of the system, thereby reducing the load from the
feedback control block and keeping the feedback gain rea-
sonably small. It also helps eliminate the conditions that
are normally required to prove the error convergence of
the system [5]. In order to compensate for the error that
has been inevitably introduced from the fuzzy approxi-
mation of the feedforward nonlinear term, the switching
mode control algorithm is added to the fuzzy controller.
Since the gain of the switching mode control algorithm
decreases to zero as the error converges to zero, its effect
reduces to zero. The learning controller updates the input
signals by using the feedback signals obtained from lin-
ear feedback control block. In contrast with many other
learning control schemes [1, 4], the presented scheme up-
dates iteratively not only the learning control signal but
also the parameters in the fuzzy logic system by using a
regressor vector obtained from the fuzzy basis function.

2 Problem Formulation

The nonlinear dynamic systems that are considered in
this paper are of the form:

9(x(0)&(t) + f(z(t), £(t)) = u(?), (1)
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where z(t) : R — R, g(z(t)) : R — R and f(x(t), £(t)) :
R? — R. In order to simplify the presentation, the sys-
tem is assumed to be the single-input single-output(SISO)
systems, but can be easily extended to multi-input multi-
output(MIMO) systems. The results in the subsequent
sections are developed based on the following assump-
tions that hold in many practical systems.

Assumption 1 For all (z,2) € U where U is a compact
set in R?,

d
l1 <g(z) <l and ‘—Z(—;—) <1y,

for some !y, and ry > 0.

Assumption 2 f(x,&) satisfy the following Lipschitz
continuity conditions:

|f(z1,%1) ~ f(x2,Z2)| < rp(|lT1 — 22| + |21 — T2])

for all (z1,21), (x2,£2) € U, where U is a compact set in
R2,

Note that the system (1) describes a class of nonlinear
systems which include holonomic mechanical systems as

its subset. . .
The desired control input us that generates the desired

trajectory x4 in (1) satisfies the following assumption.
Assumption 3 The bound v} of |u,| is known.

Under these assumptions, the fundamental learning con-
trol problem is the following.

Problem Statement. Suppose that z4(t) € C2[0,f],
the trajectory of system (1), is in the interior of a do-
main U, which is a compact and simply connected set of
R?. Then find a sequence of piecewise continuous con-
trol input v’ (t) € R for uncertain system (5) with which
the system trajectory z7(t) converges to z4(t). In other
words, for a given € > 0 and t € [0, t], find a sequence of
u? (t) such that there exists N > 0 such that

lxg(t) — 27 (t)| <e, forall j> N.

Our approach to the above problem is the approximation
of nonlinear functions g(z) and f(z, %) with fuzzy logic
systems and the use of learning control strategy to achieve
precise tracking.

3 Fuzzy Logic Description of Non-
linear Systems

As stated in the universal approximation theorem {10, 11],
any continuous nonlinear system can be approximated
by a fuzzy logic system with arbitrary accuracy in the
compact domain. Thus, the nonlinear functions f(z,z)
and g(z) in (1) can be approximated by the fuzzy logic
systems as follows:

g() = 9(zl0;) + we(x) = {J (z)0; +wy(x)  and
f@,2) = f(z,20}) +wy(z,2)
= (T(z,2)0% + wy(z, &), 2)

where (;(z) and (f(x, %) are respectively the fuzzy ba-
sis function vectors of §(z|d;) and f (z,210%); wy(z) and
wy(z, &) are the corresponding fuzzy approximation er-
rors. Here the optimum parameter vectors ; and 6} are
defined by

9; = and

0y =

argming,cq, [Sup(z,i)eu|g($) - Q(Jf‘leg)l]

argminojenj [SUP(z,a':)evlf(m’ x) - f(mv $|0f)|] )

where {); and (s are the bounded feasible sets of §, and
6 respectively.

For notational brevity, we will use in the sequel g for
9(z); f for f(z,z); ¢° for g(z); f7 for f(a?,4%); fa for
f(xa,%a); ga for g(xzq); §* for §(z16%); f* for f(z,£|0");
§* for §(z716*); f* for f(x?,47|6*); g3 for §(z4)6*); £} for
f(_:vd,m'd|0*); wg for wg(x); wy for wy(z, T); wg for wy(z7);
w} for wp(a?, #); wy, for wy(xa); wy, for wi(za,z4).
Note here that w; and w, are Lipschitz continuous since
9(z), f(z,z),{(x) and (s(z,z) are Lipschitz continuous
from Assumption 1 and 2, and from the universal approx-
imation theorem [10, 11]. Thus, it follows that

lyjx —z4| and

U(lz — zal + & — Z4l),

lwg(z) — wy(za)]
lwy(z, %) — wi(zd, Zd)|

IN A

for some positive constants [; and [y.
Now, let 27 and z4 be respectively the states of (1) due
to inputs u’ and ug. Then, it follows from (1) that

GE —&a)+ (¢ — ga)ia+ f — fa
= ¢#+ (g — ga)Ea—aélg’ + f1 - f4

= - Ugq,

(3)

where ¢/ = 27 — x4, 27 = ¢’ + ae’ and a is a positive

constant. .
Substituting (2) into (3), we have
g+ (97 — 93)ia — a¢’§” — abwd + (w) — wy,)iq

+f¥ —fj+(w}—wfd) =ul — ug, 4
which can be rearranged further to

g4 —adlg? + glig+ £

= W —ug— (w'; — W, )Eq — w;" +wyp, + aéj'w-;, (5)

where g;j =" - g} and fe*j = f¥ - f; By using the
fuzzy basis function representation in (2), equation (5)
can be represented as

FH YO =0 —uy — wl, (6)
where Y] = $<g(mj)7§i'd - aé’) - (gT(xd_)id,C?(ﬂfj,ij)_ -
CfT(zd,zd)), o = (6, ?0; ) and wl = (wé—wgd)a'éd+u)}—
wy, — aé’w]. Since w}; and w} are Lipschitz continuous,
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the combined fuzzy approximation error term w? satisfies
for all § > 1 that
lwil <

|(w] — wg,)Eal + lw} — wy,| + ale’w]|

IA

where I, = lj|Z4| + 15 + al,.

Note here that (6) is in the linear form with respect to the
parameter §* with additional fuzzy approximational error
wl. It will be used extensively in the following sections
to prove the stability and the convergence of the closed
loop system.

4 Fuzzy Learning Control

Now, based on the previous fuzzy system representation
(6) of nonlinear dynamical systems (1), we construct a
fuzzy learning control strategy. We assume in this section
that the parameter #* which realizes the optimum fuzzy
representation is fully known. The next section deals with
the case when the parameters are not completely known.
Now, we propose the fuzzy learning control law for (1) as
follows:

= +ul+ul+ M, (7)
where
¢ = YO u=—(Bk+ k&)
W, = L]+ 1&])sgn(z?);
W = proj(R’); h =R — Bk (8)

where k; > 1, and sgn(z7) is 1 when 2 > 0 and —1 when
27 < 0; proj(h?) is the projection operator defined by

iR > a,
—uf if A< —uf
hI otherwise.

proj(k’) =

u]} is a linear feedback term that stabilizes the overall

closed loop system. ¢ is a fuzzy logic representation of
the nonlinear term (¢’ — g4)i4 — aé’g’ + f? — fq. Its main
effect is to reduce the control load from the feedback term
u? and maintains small feedback gain k. Since & is also
used in the learning controller (8), small value of k can
help achieve smoother performance of the learning rule
(8). u] is a switching type control term that compensates
for the fuzzy approximation error. Note that the gains
of u! converges to zero as error converges to zero. hJ
isa learmng rule that estimates and compensates for the
desired control input u4. The projection operator guaran-
tees that A7 is bounded. Note that the proposed learning
control law does not use any derivative of output feedback
i1, 2, 4].

Substituting (7) into (6), we have

(9)

where @/ = h? —uy. Now, we prove that the proposed con-
troller (7) keeps the tracking errors 27, e’ and &’ bounded
and drives them to zero.

G+ Bk + k|2 |2) = @ — wl +ul,

Lol&dlle’| + 17 (17| + |&7]) + Lalae’| < Le(le?] + 1)),

Theorem 1 The fuzzy learning control system (9) is
bounded;

127 (t)] < (ﬂl (),

and converges as follows:
1) lim v7(t) = v(t)
j—00

lim 27(t) = 0

J—0

1) for all ¢ € [0,ty],

t1

where v/ (t) = / Eﬂjz(T)dT for all ¢ € [0,t;] and for all
0

j=2L

Proof. First, we show that |27| is bounded. Let @ be
hi —ug. Then, |&’| > |#|, and v/ *1(t) —v?(t) < P/FI(E) —

t
v(t), where #(t) = Ilc dr. Let Aw be @™ — @.
, 0
Then, AW = &+ — @ = BI+1 —
V() - V() <) -
1. 1_
= / ( J+12 k 2)dT

. /(EAaMEAaJaJ)dT
u]

h = —Bkz7, and
v (t)

il

t 9 . . . . . - .
/ (B%kz" — 2827 (g5 + Bkz’ + kg3’ |27 — wl +u))
0

IA

t
/O (~B%kz" — 282797 — k|3 |27 Ydr
< By

Thus, v! > v/ — vi+! > B¢i29" for all j > 1, which proves
that |27| is bounded. Next, since v’ is positive definite and
monotonically decreasmg, it converges to some function
v, which is (s). From the convergence of v7, it follows that
there exist a positive integer N for all & > 0 such that
lwit1(t) —vi(t)| < o for all j > N. If we choose o = Bl;€2
given any ¢ > 0, then we have
Bl (t))? < v (t) — () < Bhe®  forall j > N.
(10)
Hence, it follows that |27(t)| < € for any € > 0, from which
(ii) follows. Q.E.D.

Since 2/ converges to zero and e’ (0) = é7(0) = 0, &’ and &’
also converge to zero. Note that v! decreases as feedback
gain k increases. Thus, we can keep the state (z7,%7)
within a compact set U by increasing the feedback gain
k. In establishing that the states are bounded, our proof
is much simpler than that of Kuc et al. [6].

5 Adaptive Fuzzy Learning Con-
trol

Since the optimum parameter vector 8* is not known in
general, we need an additional learning algorithm that
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search for the optimum ¢* and then the nonlinear term
(9° —g4)Z4—aé’ g’ + f7 — f4 as closely as possible. We, thus,
introduce a parameter learning algorithm in this section
based on the following assumption.

Assumption 4 The bound 6° of |(6;7,6;7)| is known.
In order to simplify the convergence proof, let us first in
this section modify the feedback control law u} as,

wly = —(BYIYI + Bk + koli?|) 2. (11)

Since the parameter vector 6* is not known, the estimated
parameter &7 is used instead to compute the adaptive
fuzzy control input ¢?:

d=Yif (12)

Substituting (11) and (12) into (7), and then (7) into (6),
we have

@2+ BkT + BYIYT 2+ ki |

= Y0+ —wl+d, (13)

where 67 = §7 —0*. At this point, we propose a parameter
learning rule as follows:

. L aj+l L2+l L ,2j+1
#*" = proj{6  } = {proj(6, ),---,proj(fy )} and
(14)

25+1 Py T
§ =6 +pY]) 2,
where
aj+1
. e if§ >
. 2i+1 =j+1
proj(f; )= —¢ iff < -6
2j+1
X otherwise.

1

When the proposed parameter learning rule is used in
conjunction with the learning rule (8) in the controller,
we can prove the stability and the convergence of the
closed-loop system as given below.

Theorem 2 The adaptive fuzzy learning controller with
the learning control rule (8) and the parameter learn-
ing rule (14) for the uncertain dynamic system (13) is
bounded as follows:

, 1 1
i) < (=—vl(t))?
l27(t)] < (ﬁllva( LR
and converges as follows:
i) lim v (¢) = v,(t)
j—oo

i) lim 27(t) =0 forallt € [0,tg],
j—oo

t ~

where v (£) = / (%af(f)wf(f)oﬂ(f))df for all t €
0

[0,tf] and j > 1.

Proof: Similar to that of Theorem 1

Note here that, v! decreases as feedback gain k increases
or.éj comes closer to 6*. Thus, we can keep the state
(x?,47) within the preset compact set U by increasing
the feedback gain & or by choosing 67 appropriately.

6 Conclusions

An adaptive fuzzy learning control scheme is presented
for a class of nonlinear dynamic systems where an exact
linear parametrization of the dynamics is not possible.
The controller compensates for the nonlinear term via
adaptive fuzzy system. The fuzzy compensation term re-
duces the control load from the feedback controller term
and keep the feedback gain values reasonably small. The
learning controller achieves precise tracking without us-
ing any output derivative terms which are vulnerable to
noise. In contrast with other learning controllers, our
parameter learning rule achieves the error convergence
under virtually no conditions.
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