• Title/Summary/Keyword: nonlinear system modeling

Search Result 716, Processing Time 0.029 seconds

Construction of T-S Fuzzy Model for Nonlinear Systems (비선형 시스템에 대한 T-S 퍼지 모델 구성)

  • 정은태;권성하;이갑래
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.941-947
    • /
    • 2002
  • Two methods of constructing T-S fuzzy model which is equivalent to a given nonlinear system are presented. The first method is to obtain an equivalent T-S fuzzy model by using the sum of linearly independent scalar functions with constant real matrix coefficients. The sum of products of linearly independent scalar functions is used in the second method. The former method is to formulate the procedures of T-S fuzzy modeling dealt in many examples of previous publications; the latter is a new method. By comparing the number of linearly independent functions used in the two methods, we can easily find out which method makes fewer rules than the other. The nonlinear dynamics of an inverted Pendulum on a cart is used as an equivalent T-5 fuzzy modeling example.

Discrete Time Modeling of the Front Suspension System with Nonlinearity (비선형성을 갖는 전륜 현가장치의 이산시간 모델링)

  • 이병림;이재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.156-164
    • /
    • 2000
  • In this study, a discrete time model for a simplified front wheel suspension system which has nonlinear dampling and stiffness property is introduced. The model is estimated from the discrete data which are generated based on the real car parameter. The performance of the proposed method is evaluated through numerical simulation, and the simulation results show that the proposed method can estimate the nonlinear behavior of the suspension system very well.

  • PDF

A ESLF-LEATNING FUZZY CONTROLLER WITH A FUZZY APPROXIMATION OF INVERSE MODELING

  • Seo, Y.R.;Chung, C.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.243-246
    • /
    • 1994
  • In this paper, a self-learning fuzzy controller is designed with a fuzzy approximation of an inverse model. The aim of an identification is to find an input command which is control of a system output. It is intuitional and easy to use a classical adaptive inverse modeling method for the identification, but it is difficult and complex to implement it. This problem can be solved with a fuzzy approximation of an inverse modeling. The fuzzy logic effectively represents the complex phenomena of the real world. Also fuzzy system could be represented by the neural network that is useful for a learning structure. The rule of a fuzzy inverse model is modified by the gradient descent method. The goal is to be obtained that makes the design of fuzzy controller less complex, and then this self-learning fuzz controller can be used for nonlinear dynamic system. We have applied this scheme to a nonlinear Ball and Beam system.

  • PDF

Dynamic Analysis of Harmonically Excited Non-Linear System Using Multiple Scales Method

  • Moon, Byung-Young;Kang, Beom-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.819-828
    • /
    • 2002
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear systems. This method is based on the substructure synthesis formulation and a MS (multiple scales) procedure, which is applied to the analysis of nonlinear responses. The proposed procedure reduces the size of large degrees-of-freedom problem in solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated with the nonlinear rotating machine system as an example of large mechanical structure systems. In addition, its efficiency for nonlinear response prediction will be shown by comparison of other conventional methods.

Introduction to Thermoacoustic Models for Combustion Instability Prediction Using Flame Transfer Function (화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.98-106
    • /
    • 2011
  • This paper reviews the state-of-the-art thermoacoustic(TA) modeling techniques and research trend to predict major parameters determining combustion instabilities in lean premixed gas turbine combustors. Linear TA modeling results give us an information on eigenfrequencies and initial growth rate of the instabilities. For the prediction, linear relation equation between acoustic waves and heat release oscillations should be derived in the determined system. Key information for this analysis is to determine the heat release fluctuations in the combustor, which is typically obtained by using n-${\tau}$ function from flame transfer function measurements and/or predictions. Great advancement in the linear TA modeling has been made over a couple of decades, and some successful prediction results have been reported in actual gas turbine combustors. However nonlinear TA model developments which are required to analyze nonlinear system behaviors such as limit cycle saturation and transition phenomena are still limited in a very simple system. In order to fully understand combustion instabilities in a complicated real system, nonlinear flame dynamics and acoustic wave interaction with nonlinear system boundary conditions should be explained from the nonlinear TA model developments.

Design of a smart MEMS accelerometer using nonlinear control principles

  • Hassani, Faezeh Arab;Payam, Amir Farrokh;Fathipour, Morteza
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • This paper presents a novel smart MEMS accelerometer which employs a hybrid control algorithm and an estimator. This scheme is realized by adding a sliding-mode controller to a conventional PID closed loop system to achieve higher stability and higher dynamic range and to prevent pull-in phenomena by preventing finger displacement from passing a maximum preset value as well as adding an adaptive nonlinear observer to a conventional PID closed loop system. This estimator is used for online estimation of the parameter variations for MEMS accelerometers and gives the capability of self testing to the system. The analysis of convergence and resolution show that while the proposed control scheme satisfies these criteria it also keeps resolution performance better than what is normally obtained in conventional PID controllers. The performance of the proposed hybrid controller investigated here is validated by computer simulation.

Fuzzy Modeling for Nonlinear System Using Multiple Model Method (다중모델기법을 이용한 비선형시스템의 퍼지모델링)

  • Lee, Chul-Heui;Ha, Young-Ki;Seo, Seon-Hak
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.323-330
    • /
    • 1997
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. To express the various and complex behavior of nonlinear system, we combine multiple model method with hierachical prioritized structure, and the mountain clustering technique is used in partitioning of system. TSK rule structure is adopted to form the fuzzy rules, and Back propagation algorithm is used for learning parameters in consequent parts of the rules. Also we soften the paradigm of Mamdani's inference mechanism by using Yager's S-OWA operators. Computer simulations are performed to verify the effectiveness of the proposed method.

  • PDF

A Multiple Model Approach to Fuzzy Modeling and Control of Nonlinear Systems

  • Lee, Chul-Heui;Seo, Seon-Hak;Ha, Young-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.453-458
    • /
    • 1998
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations about system, we combine multiple model method with hierarchical prioritized structure. The mountain clustering technique is used in partition of system, and TSK rule structure is adopted to form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules. Computer simulations are performed to verify the effectiveness of the proposed method. It is useful for the treatment fo the nonlinear system of which the quantitative math-approach is difficult.

  • PDF

A study on the dynamic modeling of driving system of a heavy industrial vehicle (중장비 구동체계의 제어용 동적 모델에 관한 연구)

  • 홍성욱;강민식;이종원;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.222-233
    • /
    • 1987
  • A dynamic modeling procedure for developing a control model of the driving system of a heavy industrial vehicle is presented. The dynamic model is derived by applying generalized Lagrangian equations to each component of the system and imposing kinematic relations between components as constraints. In order to obtain the control model, a few assumptions are made for the simplification of the nonlinear and complicated model, which is justified by the comparison of the simulation results of the original full nonlinear model and the simplified control model.

Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF