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Abstract

In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented.
So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations
about system, we combine multiple model method with hierarchical prioritized structure. The
mountain clustering technique is used in partition of system, and TSK rule structure is adopted to
form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules.
Computer simulations are performed to verify the effectiveness of the proposed method. It is useful
for the treatment of the nonlinear system of which the quantitative math-approach is difficult.
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1. Introduction

Even though most
intrinsically contain the nonlinearity, they are
usually approximated as linear model in the
vicinity of nominal point because the mathematical
treatment of nonlinearity is somewhat difficult and
there's no general tools to cover all sorts of the
nonliearities. However, the linearization method
may not succeed in coping with the uncertainty
of the system and the change of the operational
environment[1].

To attack these problems, some complicated
control mechanisms such as adaptive control and
variable structure system control have been
proposed. However, there still exists a problem to

physical systems

be solved: the construction of a available
mathematical model of system for them.
Therefore, as indicated in Zadeh's principle of

incompatibility, it is desirable to apply the fuzzy
theory to system modeling and control in case
that the mathematical formulation of the system is
troublesome to handle[2].

Fuzzy modeling and control use the qualitative
characteristics of the system, and it provides a
nonlinear relationship induced by membership
functions, rules, and inference. From a viewpoint

of the flexibility, fuzzy modeling and control
implicitly possesses the properties similar to
variable structure system or multiple model
method, since many "IF - THEN - " rules are

arranged in parallel in fuzzy rule base. It can also
have the adaptive capability by learning procedure

of the membership functions and rules|2,3,4,5].

If a single rule base is constructed for the
system of which the nonlinearity is severe and
complicated, the size of rule base becomes very
large, and the consistency between the rules is
hardly to be retained, and the computing time for
inference increases. Therefore, it's better to
express the system characteristics with several
different workframes (i.e. multi-models) partitioned
appropriately  according to  its  operational
characteristics. Moreover, a special rule structure
which reflects the degree of specification of the
rules is preferred because they don't have the
same degree of belief even if they belong to the
same rule base.

Thus, in this paper, a new approach to
modeling and control of nonliear systems using
fuzzy theory is presented, where we combine the
multiple model method[6,7] with hierarchical
prioritized structure(HPS){8] to express effectively
the complex behavior of various nonlinear
systems.

The first thing to be solved in the proposed
method is partitioning of the system into several
models. We solve this problem by clustering the
observed data in input-output space, and the
mountain clustering(MC) technique{9] is used for
fuzzy clustering.

Next problem to be handled is the
construction of rule base for each partitioned
model. The hierarchical prioritized structure make
it possible to express the difference in the degree
of belief on the rules, since the more specific the
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rules are the higher levels of priority they have.

For individual rules, TSK(Takagi-Sugeno-Kang)
type fuzzy rules are adopted, where the
consequents employ the functions of input
variables, usually linear functions, instead of fuzzy
subsets.  So rule generation requires the
determination of the parameters of the functions
in the consequents. We use mountain clustering
technique again in fuzzy space partitioning, and
the back propagation algorithm is used for the
determination of the parameters. Of course,
another rule generation methods may be used, if
necessary.

2. Partitiohing of system into multiple models
2.1 Multiple Model Method.

Models encountered in fuzzy modeling and
control are concerned with approximating the
relationship between input and output variables.
However, a single fixed model is liable to fail in

many cases since this relationship  varies
nonlinearly depending on system characteristics
and operational environment. Therefore it s

natural to take a family of models than single
model for the representation of system.

The multiple model is a collection of models
equipped with some mechanisms aimed at a
relevant  triggering between the models or
aggregating the results furnished by the individual
models[6,7]. From the operational standpoint, it is
essential to elaborate on how the partition of the
input-output space can be carried out efficiently.
The main idea is to reveal the structural
relationship between the input and output variables
via a method of specialized fuzzy clustering: the
mountain clustering method.

First, we partition the system into several
sub-models on input-output space in accordance
with their characteristic similarity by using
mountain clustering. Next, for each subsystem, we
construct the TSK type fuzzy rules as follows:

IF xi is A ... and Xn is An THEN y=fi(x1, ..., Xa)

In general, the function f; in the consequent
part is linear. If that is the case, the above rule

implies a linear approximation of system
characteristics for a specified fuzzy input
subspace. Therefore, each sub-model becomes

nothing but a collection of linear approximations
expressed by a number of fuzzy rules.

Fig 1. shows the example of the partition of
system. In this case, the system is divided into 5
sub-models with cluster centers denoted by *, and

lines in sub-model C represent the linear

approximations by TSK fuzzy rules.
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Fig. 1. Partitioning of Model

If the partition is disjointed, there's no need to
introduce a special mechanism for triggering
between the sub-models or aggregating their
results, because only one sub-model is matched to
a specified input data, and the detailed behavior
around the boundary can be taken into account in
its rule base.

2.2 Mountain Clustering

As stated above, partitioning of system is
carried out through fuzzy clustering procedure.
Although different clustering methods such as
ISODATA, Fuzzy C-Means, and Fuzzy Bounded
Classification methods can be applied for this
purpose[2,3]. We use here a recently developed
clustering approach called the mountain clustering.
This clustering technique is a very simple
grid-based three-step process for identifying the
approximate location of cluster centers in data sets
with clustering tendencies.

In the first step we discretize the object space by
griding with lines and generate the potential cluster
centers as the intersection of these grid lines, called
nodes. The second step uses the observed data to
construct the mountain function, which is constructed
by adding an amount to each node exponentially
inversely proportional to that node's distance from the
data point. The third step generates the cluster cenfers
by an iterative destruction of the mountain function,
where the effect of the just-identified cluster center is
eliminated from the total score of each node.

We note that it is not necessary for the
griding lines to be equidistant in this method;
they can be finer or coarser in different regions
of the space according to data characteristics. A
finer griding increases the number of potential
cluster centers but also increases the calculation
required.

Assume the data consists of a set of K points,
Ow(xk,Yx), in the input-output space X XY, and the
number of grid nodes Njj(X,Y;) is N(=r, Xr;). The
mountain function M is constructed from the
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observed data by adding an amount to each node
in N proportional to that node's distance from the
data point; it takes nonnegative values only. More
formally for each point N,(XY))

M(N,) = Zle (ad(N,.0.)) (1
where @ is a positive constant, and d(N,, O) is
a measure of distance between N; and O
typically, but not necessarily, measured as
d(Nij.Ok)::(Xi"xk)2+(Yj_yk)2 (2)
The values of mountain functions are

approximations of the density of the data points
in the vicinity of each node. The higher the
mountain-function value at a node the larger its
potential for a cluster center.

Therefore, we designate the node with
maximal total score M, as the first cluster center
C.". In order to get the next cluster center, we
must remove the effect of the peak associated
with the just-identified cluster center and revise
the mountain function because this peak is usually
surrounded by a number of grid points that also
have high score. This destruction of the mountain
function is realized by subtracting from the total
score of each node a @ product of M," and an
exponential term  inversely proportional to the
distance of the node from the just-identified
cluster center.

That is, we form a revised mountain function
M; such that:
M,(N;) = M,(N;) = Mje 74 3)

where /A is a positive constant.

It guarantee that those nodes close to the
identified cluster center have mountain values that
are reduced more strongly than those further
away. Now we repeat the above procedure
iteratively until the whole cluster centers are
obtained. At k-th iteration, we proceed as follows.

i. Find My =Max{M,(N)}

i1. Designate k-th cluster center Ci at the
location of maximal node found in i

iii. Formulate revised mountain function, M+, as

M1 (Ny) =M (N;)—Me #A(CLNY

The process of destroying the mountain
function ends at step m with the estimation of m
cluster centers after next M m+ becomes less than
a given stopping constant ¢ :

M‘m+1 < §
This means that there are only a very few points
around the (m+l)th cluster center and that the
cluster center can be omitted.

The cluster centers obtained by applying
mountain clustering can be regarded as nominal

points  of  corresponding  sub-models.  The
determination of the boundaries between disjointed
rule-models is very simple and easy in mountain
clustering. It is proposed that the grid point which
yields almost some values of mountain functions
with respect to 2 adjacent cluster centers is
chosen as the boundary between these sub-models.

3. Construction of HPS Rule Base

3.1 Hierarchical Prioritized Structure(HPS)

After partitioning the system, the rule base for
each partitioned model must be constructed.
Usually rules are induced from the observed data
via some identification procedures. In practice, the
behavior of nonlinear system can be exactly
described by observed data at some specific
operating points, while it is approximated more
roughly at the points further away from them.
Moreover, the rules made from more ambiguous
or less specific information give lower degree of
confidence since, the consequent of TSK fuzzy
rules present only averaged property with respect
to the fuzzy subsets in the antecedent. In
consequence, the flat representation of fuzzy rules
in a rule base leads to unsatisfactory results, and
it is desirable to use a structure that reflects the
difference in the degree of belief on the rules.

Yager's HPS[8] is such a rule structure, where
the more specific the rules are the higher levels
of priority they have, and therebv it prevent the
problem that the more specific information is
swamped by the less specific information. Fig. 2
shows in a systematic view the form of HPS
representation.

more spacific
Level 3
—_—

Levie i
——

Fig. 2. Hierarchical Prioritized
Structure(HPS)

In the HPS each subbox, denoted f, is a
collection of rules relating the system input, x,
and the current iteration of the output, y.y, to a
new iteration of the output. At the highest level
we have specific point information. The next level
encompasses these points and in addition provides
a more general and perhaps fuzzy knowledge. We
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note that the lowest level can be used to tell us
what to do if we have no knowledge up to this
point. In some sense the lowest level is a default
value. Therefore, the higher priority levels of
rules would have less general information, and
consist of rules with more specific antecedents
than those of lower priority, which generally
reflects into more specific consequent information.

In our HPS rule base for a partitioned model,
rules corresponding to a cluster center and/or
some specific points are placed at the highest
level. At the next level the specificity of the
antecedent linguistic variables would decrease.
Thus the support sets of the antecedents would be
wide and will as the range of the consequent. As
we go to lower levels, the cardinality of the
support set decreases.

If an input is not consistent with the rules in
the higher priority level, then the rules in the
lower priority levels compensate this inconsistency
to produce a suitable result. On the other hand,
an input doesn't bother to fire any of the less
specific rules in the lower priority levels if it
perfectly matches one or more of the rules in the
higher priority level.

The final result of fuzzy inference with HPS
rule base - is not obtained until the sequential
determination of the output of each level is
finished. The aggregation of rules at each level is
of the standard Mamdani type[2], and the
contribution of the lower level is limited by the
compatibility of the input to the rules in the
higher level.

Let 7, be the firing level of j-th rule in i-th
priority level given by

Ti= /\# A:(Xk) 4)

The aggregation of the rules T, in the i-th level
is obtained by

T,= JL=J1 3 ij/\fij (5)
Assume that the output of (i-1)-th level yi, is
Gii. Also we define a measure of how much
matching we have up to (i-1)-th level, denoted by
2.1, such that

g y=max g _(y)=Possibility(G;_,) 6)

Then the output of i-th level is determined from
Gy, g1, and T, as follows.

Gi(Y):(Ti(Y)/\IOW(gi))\/Giﬂ(Y) @)

where low( - ) bounds the allowable contribution
of the i-th level to the overall output. Here the
following function is used for low( - ).

low(g;))=1—g; ®

As in eq.(7), if g=1, lower levels cannot

contribute any more. As long as we have not
found one y with membership grade 1, Poss{G.1]
1, we add some of the output of the current
subbox to what we already have. Each element y
gets 1-Poss[Gi.;] portion of the contribution at that
level, Ti. The amount Poss[Gi,] is determination
by the highest membership grade of any element
in Gir.

3.2 Parameter learning of rules

To obtain TSK fuzzy rules, we need to solve
the problems such as fuzzy space partition,
assignment of memberships for the antecedents,
and determination of the parameters of function f;
in the consequent. For fuzzy space partition, fuzzy
clustering methods or neural networks can be

used[2,3]. Learning of memberships and
parameters can also be performed by neural
networks[3].

Here we apply again the mountain clustering
to fuzzy space partition, and the parameters of
memberships and f are learned by back
propagation, which is a powerful technique for
learning neural networks.

Consider TSK fuzzy rules expressed by

IF x; is Ay AND --.- AND x, is A;

THEN y=biotbix;+- - -+ bix,,
Assume that the antecedent fuzzy sets are defined

i_—_], oo, m

by  Gaussian  membership  functions  with
parameters x'i, and o :
.2
o, ()= exp — (70 ) ©
1
Then the firing level of the rule is given by
T, = u AII(X])/\II Aa(Xz)/\- ../\/1 A"(X,) (10)

* 2
—exp( 2 1;( G ))
Therefore, the crisp output inferred by this fuzzy

rule base is as follows :

_ Z tilb+byx+ ... +bix,)
 Slen [ o

How-(L 5222

= zv;(b;n+bi1xl+.., +bi,Xr) (1)

o (132

TR )]

Thus, for a fixed number of rules m, the
problem of setting up the rules is essentially a
parameter estimation problem. For a given
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collection of crisp input-output data we can
formulate this problem as a minimization of the
square of instantaneous errors between the output
of the fuzzy model eq.(11) y and the current
output reading yx with respect to unknown
parameters x‘.,, ¢, and bjp, -+, by. The criterion
for minimization is given by

Ev =g(y-w)i=Fe

2 (13)
= %( iizlivi(bm%—b“u 1F ot bu) — vt
We obtain the following formulas for
back-propagation learning of TSK rules by

application of the chain rule.
JE

bio(k+1)::blo(k)_a ab =bi0(k)—avie (14)
JE
bii(k+1):b“(k)*’a b =bij(k)'_aVine (15)
xp(k+1) =x,‘,(k)—ailg.—k
ax;

= (0= avy(by + by + . + by, — ek

d(k)
(16)
ai(k+1) =oy(k)~a ‘;E“
_— 2
=g; (k)= avi(bj,+ ... +byx, — y)e—(-)&?:?{;(-)]—())—
(17

where ¢ is the learning rate.
The initial estimation of parameters are chosen by
x‘.,(0)= i-th cluster center

g i;(0)=\/—2%

blO(O) = bll(O) o = bu-(O) =0

(18)

Fig. 3. presents the block diagram of the
learning algorithm combine with the three-layer
network.

y
- =y — m .
—» {,[/ v—w/m 4 ;%;47[ L #r/ —( _)4—
H f=1 % Tt
{ : e

Y
Y

Fig.3 Block Diagram of Back propagation

4. Numerical Experiments

Computer simulations in two cases are
performed - to show the effectiveness of the
proposed method. One is a curve fitting problem
of highly nonlinear data corrupted by noise, and
the other is a control problem of the inverted
pendulum.

Example 1. (Modeling)

This example is concerned with the
construction of proper model from the noisy data.
The characteristics of system is governed by

X+ 2
O+ xt+3

This system is highly nonlinear. The noise
added to the original system is a white noise
with ¢ =0.05. The original system and noisy data
are presented in Fig.4, and the mode! obtained by
proposed method is also shown in Fig4. Fig. 5
shows the value of mountain functions with
respect to 5 luster centers. As shown in Fig. 4,
the proposed method find a good model for
system from the noisy data.

y= (19)

as

o35k - - - -y

Fig. 4. Cluster Center Points
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Fig. 5. Mountain Function

Example 2. (Control)
This example is a well known control
problem, the control of inverted pendulum[10].
The structure of inverted pendulum system is
shown in Fig.6, and its parameters are as follows:

g : 9.8 [™] (acceleration of gravity)
m. : 09 [kg] (mass of cart)
m, : 0.1 [kg] (mass of pole)
[ :05 [m] (half length of pole)
F o N] (force)
~
{
g
£
me e i
@ @

Fig. 6. Inverted Pendulum System
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The state equation for this system are given by

X.l =Xz (20)
geing — cosx F +m,I(sinx)x}
1 1
%= e LMo @1
Al— mEl(cosxl)
3 m.+m,
K= F+m,l [ (sinx))x; — (cosx))x,] 22)

m.+m,

where x1=0, x»= 6, and x; is the velocity of
the cart.
Because of the nonlinear and unstable nature

of inverted pendulum system, we limit initial
angle 4 and initial angular velocity to be within
[0,0.873] rad and [0,0.5] rad/sec, respectively[10].
An exact control surface obtained by numerical
integration of system equations using the shooting
method is presented in Fig.6. The proposed
method yields a control surface almost equal to
exact one, as shown in Fig.7.

Control Surface

2 e
02 D37 e 04
e s

angular velocty{radrs) BRI snglelrad]

Fig. 7. Exact control Surface

Control Surtace(Clustered)

Cotred ForcafN]

Angular Velocitylradis} o 0o

Angle(rad]

Fig. 8. Control Surface(Clustered)

5. Conclusions

Modeling and control of nonlinear system is
difficult to solve due to the complexity of
characteristics. Therefore, we suggest a new
approach in which the partition of system into
multiple model by fuzzy clustering is combined
with hierarchical prioritized structure rule base. As
the proposed method is capable of handling a
variety of nonlinearity and reflecting the degree of
confidence in the informations about system, it
can be applied effectively to the nonlinear system

of which the mathematically quantitative treatment
is difficult and troublesome. The simulation results
reveal that the proposed method is very useful for
modeling and control of nonlinear systems.
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