• Title/Summary/Keyword: nonlinear storage method

Search Result 65, Processing Time 0.029 seconds

A study on power control of nuclear reactor using revised two-level costate prediction method (개선된 two-level costate prediction method를 이용한 원자로 출력 제어)

  • 천희영;박귀태;이희정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.244-247
    • /
    • 1986
  • A revised two-level costate prediction algorithm is developed for the optimization of nonlinear nuclear power plant. The algorithm is proved to converge very well, and appears to require substantially small computation time and storage than previous nonlinear optimization algorithm. To cope with unknown external disturbances, we construct a closed loop control system. In order to get a smaller sampling time, this paper proposes the two-level Kalman filter.

  • PDF

Nonlinear Analysis of Sloshing in Rectangular Tanks by Perturbation Approach (섭동법을 사용한 사각형 유체저장 탱크의 비선형 유동해석)

  • 전영선;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.55-64
    • /
    • 2002
  • For nonlinear analysis of sloshing of fluid in rectangular tanks, a new method using the perturbation approach is presented. The results by presented method show good agreement with results in previous study. The importance of nonlinear sloshing analysis is demonstrated by comparing nonlinear behaviors of sloshing in broad and tall tanks with different site conditions. In general, the results by nonlinear analysis are greater than those by linear analysis. Specially, the nonlinear behavior is significant in softer soil site and broad tank. Therefore, nonlinear behavior analysis has to be considered in the design of large liquid storage tanks.

A Study on Channel Flood Routing Using Nonlinear Regression Equation for the Travel Time (비선형 유하시간 곡선식을 이용한 하도 홍수추적에 관한 연구)

  • Kim, Sang Ho;Lee, Chang Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • Hydraulic and hydrological flood routing methods are commonly used to analyze temporal and spatial flood influences of flood wave through a river reach. Hydrological flood routing method has relatively more simple and reasonable performance accuracy compared to the hydraulic method. Storage constant used in Muskingum method widely applied in hydrological flood routing is very similar to the travel time. Focusing on this point, in this study, we estimate the travel time from HEC-RAS results to estimate storage constant, and develop a non-linear regression equation for the travel time using reach length, channel slope, and discharge. The estimated flow by Muskingum model with storage constant of nonlinear equation is compared with the flow calculated by applying the HEC-RAS 1-D unsteady flow simulation. In addition, this study examines the effect on the weighting factor changes and interval reach divisions; peak discharge increases with the bigger weighting factor, and RMSE decreases with the fragmented division.

Output-Feedback Control of Uncertain Nonlinear Systems Using Adaptive Fuzzy Observer with Minimal Dynamic Order

  • Park, Jang-Hyun;Huh, Sung-Hoe;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.39.2-39
    • /
    • 2001
  • This paper describes the design of an output-feedback controller based on an adaptive fuzzy observer for uncertain single-input single-output nonlinear dynamical systems. Especially, we have focused on the realization of minimal dynamic order of the adaptive fuzzy observer. For the purpose, we propose a new method in which no strictly positive real(SPR) condition is needed and combine dynamic rule activation scheme with on-line estimation of fuzzy parameters. By using proposed scheme, we can reduce computation time, storage space, and dynamic order of the adaptive fuzzy observer ...

  • PDF

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network

  • Rao, Zheheng;Zeng, Chunyan;Wu, Minghu;Wang, Zhifeng;Zhao, Nan;Liu, Min;Wan, Xiangkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.413-435
    • /
    • 2018
  • Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.

Identifier Design of Thermal Storage System Using Neural Network (신경회로망을 이용한 축열시스템의 식별기 설계)

  • Kim, Jung-Wook;Lim, Hoo-Jang;Kim, Dong-Hun;Lee, Eun-Wook;Chung, Kee-Chul;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.776-778
    • /
    • 1999
  • In this paper, identifier for thermal storage system using multi-layer feedforward neural network (MFNN) is designed. It is very difficult to control thermal storage system, since thermal storage system is nonlinear and its time constant is very large. Thus, in the MFNN, delta-bar-delta algorithm for high running speed and 2-bit status input are used. Also hardware using microprocessor for identifier is developed. The experimental results indicate that the proposed method can predict temperature more accurately.

  • PDF

Seismic analysis of free-standing spent-fuel dry storage cask considering soil-concrete pad-cask interaction

  • Seungpil Kim;Sang Soon Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4446-4454
    • /
    • 2024
  • This paper presents a seismic analysis method that can evaluate a very large number of cases for the free standing dry storage cask by proposing a methodology that has short analysis time as well as accuracy. This study also performed a seismic analysis of a dry storage facility with multiple casks to show a tip-over phenomenon from earthquake accident conditions. The earthquake accident condition is long-term event that occur during about 20 s long, and lots of seismic analysis cases should be performed to consider various real conditions because the free-standing spent-fuel dry storage cask has many nonlinear responses. The soil-concrete pad-cask interaction was considered in the seismic analysis and finite element model was made using concrete pad, soil and cask models. In the reinforced concrete pad, the rebar was excluded to reduce the analysis time, but the thickness was corrected to maintain the bending rigidity. Additionally, the analysis time reduced by modeling the cask as a rigid body rather than a flexible body. 35-cases of seismic analysis were performed to determine a tip-over phenomenon from each earthquake. The analysis revealed that no tip-over phenomenon of the cask was observed in all analyses from 0.2 g to 0.6 g, however the tip-over of the cask were observed from 0.8 g with friction coefficients of 0.8 and 1.0.

Comparison of elastic buckling loads for liquid storage tanks

  • Mirfakhraei, P.;Redekop, D.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizontal earthquake loading is considered. An equivalent static loading is used to represent the dynamic effect. A theoretical solution based on the nonlinear Fl$\ddot{u}$gge shell equations is developed, and numerical results are found using the new differential quadrature method. A second solution is obtained using the finite element package ADINA. A major motivation of the study was to show that the new method can serve to verify finite element solutions for cylindrical shell buckling problems. For this purpose the paper concludes with a comparison of buckling results for a number of cases covering a wide range in tank geometry.

Application of Storage Function Method with SCS Method (SCS 초과우량산정방법을 이용한 저류함수법 적용)

  • Kim, Tae-Gyun;Yoon, Kang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.449-453
    • /
    • 2007
  • Has been being operated since 1974, recently, the flood forecasting and warning system is applied in almost all the rivers in Korea, and the Storage Function Method(SFM) is used for flood routing. The SFM which was presented by Toshimitsu Kimura(1961) routes floods in channels and basins with the storage function as the basic equation. A watershed is devided into two zone, runoff and percolation area and Runoff is occured when cumulated rainfall is not exceed saturation rainfall, but exceed, runoff is occured from percolation area, too. Runoff area is given and not changed, runoff ratio is constant. In routing process, runoff from runoff and percolation area is routed seperately with nonlinear cenceptual reservior having same characteristics and it is unreasonable assumption. Modified SFM is proposed with storage function and continuity Equation which has no assumption for routing process and effective rainfall is calculated by SCS Method. For Wi Stream, comparision of Kimura and Modified SFM is conducted and It could be seen that Modified SFM is more improvemental and easily applicable method.

  • PDF