• 제목/요약/키워드: nonlinear regulator

검색결과 77건 처리시간 0.03초

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

신경망을 이용한 Liner Track Cart Double Inverted Pendulum의 최적제어에 관한 연구 (The study on the Optimal Control of Linear Track Cart Double Inverted Pendulum using neural network)

  • 金成柱;李宰炫;李尙培
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.227-233
    • /
    • 1996
  • The Inverted Pendulum has been one of most popular nonlinear dynamic systems for the exploration of control techniques. This paper presents a new linear optimal control techniques and nonlinear neural network learning methods. The multiayered neural networks are used to add nonlinear effects on the linear optimal regulator(LQR). The new regulator can compensate nonlinear system uncertainties that are not considered in the LQR design, and can tolerated a wider range of uncertainties than the LQR alone. The new regulator has two neural networks for modeling and control. The neural network for modeling is used to obtain a more accurate model than the given mathematical equations. The neural network for control is used to overcome deficiencies by adding corrections to the linear coefficients of the LQR and by adding nonlinear effects on the LQR. Computer simulations are performed to show the applicability and a more robust regulator than the LQR alone.

  • PDF

비선형 샘플치 시스템의 출력조절 (Output regulation of nonlinear sampled-data systems)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.391-394
    • /
    • 1996
  • The effects of time-sampling on nonlinear output regulation problem is investigated. Output regulatedness is preserved under time sampling as in linear systems, however output regulatability is not robust with respect to time-sampling, and thus one needs to seek an approximate nonlinear sampled-data output regulator.

  • PDF

비선형 시스템 출력 조절과 샘플링 영향 (Outpput Regulation of Nonlinear Systems and Time-Sampling Effects)

  • 정선태
    • 전자공학회논문지S
    • /
    • 제35S권11호
    • /
    • pp.96-105
    • /
    • 1998
  • 비선형 시스템 출력 조절기의 디지털 구현시에 고려해야 할 샘플링 영향을 조사하였다. 조사결과, 선형 시스템에서와 마찬가지로 '출력 조절됨'은 보존되나, 일반적으로 '출력 조절 가능성'은 보존되지 않음이 밝혀졌다. 또한, 출력 조절 가능성이 보존되는 것을 쉽게 판별할 수 있는 비선형 시스템의 어떤 종류를 파악하였다. 이러한 결과는 일반적으로 연속시간 비선형 시스템에서 설계된 출력 조절기를 이산화하여 얻은 디지털 출력 조절기는 샘플링 시간에 대해 1차 근사에 불구함을 알려준다. 따라서, 이 결과는 일반적으로 보다 개선된 근사 샘플치 비선형 출력 조절기를 구할 필요가 있다는 것을 암시한다.

  • PDF

Nonlinear control of a double-effect evaporator by riemannian geometric approach

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.405-410
    • /
    • 1994
  • The purpose of this paper is to present the details of design procedure of a nonlinear regulator by Riemannian geometric approach and to applied it to the case of a double-effect evaporator. A nonlinear geometric model is proposed on a direct sum space of a state vector and a control vector as well as in the previous parers by the authors. The geometric model is derived by replacing the orthogonal straight coordinate axes of a linear system on the direct sum space with the curvilinear coordinate axes. The integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the geometric model a nonlinear regulator with a performance index is designed renewedly by the procedure of optimization. The construction method of the curvilinear coordinate axes on which the nonlinear system behaves as a linear system is discussed. To apply the above regulator theory to double-effect evaporators especially to the pilot plant at the University of Alberta, a suitable nonlinear model is determined by the plant dynamics. The optimal control law is derived through the calculation of the homeomorphism. As a result it is confirmed that the regulator is effective and superior to that of the conventional control.

  • PDF

A method of nonlinear optimal regulator using a Liapunov-like function

  • Kawabata, Hiroaki;Shirao, Yoshiaki;Nagahara, Toshikuni;Inagaki, Yoshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1060-1065
    • /
    • 1990
  • In general it is difficult to determine a Liapunov function for a given asymptotically stable, nonlinear differential equations system. But, in the system with control inputs, it is feasible to make a given positive function, except for a small area, globally satisfy the conditions of the Liapunov function for the system. We call such a positive function a Liapunov-like function, and propose a method of nonlinear optimal regulator using this Liapunov-like function. We also use the periodic Liapuitov-like friction that suits the system whose equilibrium points exist periodically. The relationship between the Liapunov function and cost function which this nonlinear regulator minimizes is considered using inverse optimal method.

  • PDF

단일상태 feedback을 가지는 계의 최적 비선형제어기 설계에 관한 연구 (A study on the design of the optimal nonlinear controller for single state feedback)

  • 노용균;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.206-209
    • /
    • 1988
  • For feedback control of a linear dynamic system the optimum linear slace regulator (OLSR) can be implemented only if all state are available for feedback. This work demonstrates that when only the output state is available for feedback, a nonlinear controllers can be improved performance over that obtained by a proportional controller. This paper found the optimal control law by well-known dynamic programming and principles of optimality. Thus, performance of both proportional and nonlinear controllers is compared with performance of optimum linear state regulator.

  • PDF

Chua다이오드의 비선형제어 (Nonlinear Control of Chua's Diode)

  • 임소영;이호진;이정국;김성열;이금원;이준모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.285-287
    • /
    • 2006
  • The paper treats the nonlinear robust control of Chua's circuit having Chuar's diode as an element based on the internal model principle. The Chua's diode has unknown nonlinear parameters and the circuits parameters are alos assumend unknown. Nonlinear regulator equations are established to obtain 3-fold equilibrium equations on which the output error is zero. Also an internal model of the 3-fold exosystem is constructed for obtaining the control law. Pole Placement method is used for obtaining the feeback control law. Simulation results are presented for tracking the sinusoidal and constant reference input signal. Asymptotic trajectory control and the suppression of chaotic motion in spite of uncertainties in the system are accomplished.

  • PDF

불확실성을 갖는 비선형 시스템의 적응 제어기 설계 (Design of Adaptive Regulator for a Nonlinear Uncertain System)

  • 진주화;유경탁;손영익;서진헌
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF

A method of optimal regulator using a pseudo-linearized transformation of nonlinear term

  • Kawabata, Hiroaki;Shirao, Yoshiaki;Nagahara, Toshikuni;Inagaki, Yoshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1839-1844
    • /
    • 1991
  • For a single-input nonlinear system, the transformation which transposes the nonlinear system to a controllable-like canonical system has been proposed. However this method islimited by a single-input system and it is difficult to apply the method actually. In this paper we propose a method which transposes the nonlinear system with multi-input into an equivalent pseudo-linear system. And we apply the pseudo-linear system to a linear optimal regulator. To confirm the effectiveness of the proposed method, a transient stability control of the generator with an excitor and a governor is considered.

  • PDF