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ABSTRACT

in general it is difficult to determine a Liapunov function
for a given asvinptotically stable, nonlinear differential equa-
tions system. But, in the system with control inputs,it is feasi-
ble to make a given positive function, except for a small area,
globally satisfy the conditions of the Liapunov function for
the system. We call such a positive function a Liapunov-like
function, and proposc a method of nonlincar optimal regula-
tor using this Liapunov-like function. We also use the periodic
Liapunov-like function that suits the system whose equilib-
rium points exist periodically. The relationship between the
Liapunov function and cost function which this nonlinear reg-
wlator minimizes is considered using inverse optimal method.

1. INTRODUCTION

Most differential equations describing the actual behav-
jor of a system are generally nonlinear. However, the linear
optimal regulator is effective when the operation of the sys-
tem is restricted to a small region around a chosen operating
point. In an inherent nonlinear system which shows strong
non-linearity the linear vptimal regulator often fails, and it
is desirable to design the nonlirear optimal regulator for the
wide range coutrol. For the nonlinear systems in which the
noulinearity exists on the state vectors only, some methods
for a nonlinear regulator are developed(D—(3).

In this paper we propose a method for developing a
nonlinear optimal regulator, using a Liapunov-like function in
a nounlinear svstem. In general, it is difficult to determine the
Liapunov function for a given asymptotically stable nonlinear
differential equations system. But, in a system with control
inputs, it is feasible tu show that any given positive function
can globally satisfy the conditions of the Liapunov function
for the system, by adding appropriate control inputs.

For the Liapunov-like function V(x)( V(x) is chosen ar-
bitrarily), we use the coutrol input u = —SBT Vx(x) where S
is a positive definite diagonal matrix and Vy(x) is the gradi-
ent of the Liapunov-like function V(x). The time deriva-
Fe(x)Tx = Ve(x)TM(x) —
Ve (x)TBSBT Vi(x) and if we choose the elements of the pos-

tive of V(x) becomes \.(x) =

itive definite diagonal matrix S appropriately large, we can
make ¥V{(x) < 0, notwithstanding the value of inner product
VX(X)" f(x) where f{x) is a nonlinear vector valued function.

Therefore, if we add the control input w = —SBT Vy(x), the
Liapunov-like function V' (x) satisfies the conditions for a Lia-
punov function, and the control input n = ~SBT ¥ (x) makes

the system stable.

In general the magnitude of the control input has a con-
strained limit. The larger the values of S the greater the con-
trol input, so it is not desirable to choose large values [or S. It
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is more desirable to choose a value for \"x(x)'rf(x) as negative
as posible to satisfy the condition of the Liapunov function
V(x) < 0,because the second term —Vy(x)TBSBT V,(x) has
a negative value. We consider the region that satisfies the con-
dition V(x) < 0, and the relationship between the Liapunov
function and cost function. We consider an inverted pendu-
lum with DC motor control as a numerical example.(*)

2. OPTIMAL REGULATOR USING
LIAPUNOV-LIKE FUNCTION

Consider the system of differential equations in which the
nonlinearity exists on the state vectors only.

x = f(x) + Bu (1)

Here, x is an n—dimensional state vector of the dynamic sys-
tem and u is an r-dimensional control vector. f(x) is a non-
linear vector-valued function and B is an »n x r dimensional
matrix.

As the optimization criterion, we choose

J = [g(x) + %uTRu]dt

with g(x) > 0. Let R be a positive definite diagonal matrix,
then the function which represents the minimum value of the
criterion function (2) becomes positive.

Vix,t) = min/oo[q(x) + %llTRl‘l]dl (3)
t

u(t)
If we assume that the minimum value of (3) is finite, the

steady state Hamilton- Jacobi-Bellman equnation becomes the
following eguation.

min[g(x) + JuTRu+ Vy(x, )T{f(x) + Bu}l =0  (4)

u(t)
Therefore the optimal control that satisfies (4) is given as fol-
lows.
uw=—RBT Vy(x, 1) (5)
where
A aV(x,t)
Vi(x,t) = B

When f(x) = Ax and ¢(x) = x'Qx. we can describe the
equation (5) as the linear optimal regnlator by choosing the
V(x) = xTKx. But, in general, it is difficult to determine the



specific function if ¢g(x) is arbitrarily given. So,we first set the
posttive function and then we make the control input (6).

u = —-SBT Vy(x) (6)
where Vy(x) is the gradient of the Liapunov-like function
V(x). differentiating ¥'(x) with time ¢ and substituting (1)
and (6), we obtain equation (7).

V(x) = Ve(x)-%
= Vil(x)T[f{x) + Bu]

= Vie(x)TH(x) = Vx(x)TBSBT Vx(x) (7)

Since the second term of equation (7) has a negative value,
if we choose a large value for S, the value of equation (7) be-
comes negative for any state x which satisfies BT Vy(x) # 0.
Then the conditions for the Liapunov function are satisfied
in the area BT Vx(x) # 0, and the control law (6) makes the
system (1) asymptotically stable. But V' (x) is not a Liapunov
function in a strict sense because the conditions for the Lia-
punov function are not satisfied in the area BT Vy(x) = 0. In
numerical examples shown later. even if the condition for the
Liapunov function is not satisfied, the control input given by
equation (6) makes the system asymptotically stable.

On the other hand, the control input (6) minimizes the crite-
rion function (2). In the inverse optimal aspect the function
q(x) is given by the following equation.

&)

For the positive function V' (x), chosen arbitrarily, it does not
necessarily follow that the function g(x) becomes positive. To
choose a V(x) which the function ¢(x) becomes positive, trial
and error is required. Tt is desirable to choose the Liapunov-
like function that makes a weight coefficient matrix S smaller.

We now compare the condition V(x) < 0 and the con-
dition ¢{(x) > 0. Substituting equation () into equation (7),
we get the following:

9(x) = = Vu(0)TH00) + 3 Vx(x)TBSBT V()

V(x) = q(x) - + Vx(x)TBSBT Vi(x) (9)
If the function ¢(x) is positive, the condition V(x) < 0is al-
ways satisfied because the second term of the equation (7) is
negative. On the other hand, even if the value of the equation
(8) is negative, g(x) is not always positive. Therefore, it is
easier o choose a V(x) < 0 than to set ¢(x) > 0. In the
stabilization control, the determination of the control input
which satisfies V(x) < 0 is sufficient for application.

3. SIMULATIONS

3.1 NUMERICAL EXAMPLE
We shall firstly dispense with the trivial form of system

(1):
x = f(x) + bu

)

where

SN X4

f(x)= ( 0

()
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Take the quadratic equation as a Liapunov-like fanction.

Vix)= éxTKx

Then the control input becomes as follows:

u=—sx Kb

—S(lexz)( ) ( (1)

= —s(K12x1 + K2ox2)

I\’]]
K

Ky
Ko

)

And time derivative of ¥V (x) becomes as follows:

V(x) = xTK(f(x) - sxTKb)

9

= (Knix1 + Kiaxa) sin xz — s(Kiax1 + Kpaxa)
where K11, K12, K2 are the elements of matrix K respectively.
When
Ky =10, K12=08, Koo =10

V(x) becomes the positive function at x # 0.

Fig.1 shows the regions of V(x) > 0 corresponding to param-
eter s for the coefficient of the control input. The smaller the
values of s the wider the region V(x) > 0.

X2
4.0

2.0

-4.0

Fig.1 Regions of V(x) > 0

Fig.2 shows the phase diagram of zy and z, of the solu-
tions solved by some initial values. Tt is observed that the
system states with the control input converge on the origin.
No control leads the system states to instability as seen from
the system equation. It is noted that the solution which de-
parted {from the initial value (x;,x2) = (2.0, —2.0) which is in
the area of V(x) > 0 in Fig.1, doesn’t converge on the origin.



-4.0r

Fig.2 Phase diagram of solutions

Fig.3 shows the time responses of V(x) and V(x) for the
initial value (2.0, 2.0).1n this example V(x) conpletely satisfies
the condition for a Liapunov function.

3.0

6.0

i 0 Vi(x)

0 -
1.0 2.0 3.0 t
-3.0 .
Vi(x
5.0 1)

-9.0

Fig.3 Time response of V(x) and V;(x)

Next we consider the periodic Liapunov-like function Va(x).

1 . Ky Kyp Xy
/. = - sin xp . .
‘Z(X) - Z(XM m x“) ( R]g 1\"_73 Sin X»
, e . I\’U ]\'13 1 0
sz(x) - (X],Sln Xg) ( K]Z ]\'33 ) ( 0 COS Xz )

_ —S(X . ) /\‘11 I\'12 1 0
u= 1, S X3 K’]g ’(2'_7 0 cosxo

Va(x) = Vax(x)f(x) = s( Vax(x)b)?
= (A 1x1 + Kyasinxg) sinxa — s(Ki2x; cosxz
+ K53 8in X2 cos xz)2

Fig.4 shows the three dimensional graph of V3(x), where
Vo(x) becomes 0 at (0, 77) (n=0,1,2,...).
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Fig.4 “Three dimensional graph of V(x)

The comparison of the phase curves of the solutions using
/1{x) and V5(x) is represented in Fig.5 where the initial state
It can be seen that the state converges on the
new equilibrium state (0, 7) in the case using Vy(x). And the
of the control inputs and the comparison of the
values of the cost function are represented in Fig.6 and Fig.7
It is seen that the state in the case using Va(x)
moves to the equilibrium point by smaller control input than

is (2.0,3.0).
comparison

respectively.

the case using Vi(x).

X2
8.0”
[ V(x)= Valx)
4, Of-=- /
o T a0 x
V(x) = Vi(x)
-4.0

Fig.5 Phase diagram of solutions

u
L
3.0}
2.0F
Lo V(x) = Vi(x)
0 . n

Vix) = V(x)

Fig.6 Comparison of control inputs
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Fig.7 Comparison of the time response of Liapunov-like

function

Fig.8 shows the region V(x) > 0. Note that the area of Vix)>
0 does not always mean the area of instability.

X2

4'0¥~

1

5.0 40 2.0 20 40 6.0  x
—_— 4.0
afh—
T

Fig.8 Region of Vz(x) >0

3.2 INVERTED PENDULUM WITH DC MOTOR
CONTROL

Next we consider an inverted pendulum with DC motor
control as illustrated in Fig.9. The pendulum kinematics can
be described by the following:

mi0 = lmgsind — T,

T, = 10K,,]

where m is the mass of the pendulum, ! is the length of the
pendulum, 8 is the angle of the pendulum measured from the
inverted state, and g is the gravity constant. The torque T},
of the pendulum is proportional to the current of DC motor,
where K, is a torque constant. Let V be the input voltage;

the circuit equation is represented by the following equation:
LI+ RI+ V=V
Vb = 10]\"#‘)

where I and R are the inductance and resistance of the ar-
mature winding of the DC motor. The induced voltage V is

proportional to the angular velocity, where K is the induced
voltage constant. Regarding 8, A and I as state variables, and
V' as control variable, we let x; =  xy = g, xy=land u =V,
Then we obtain the following simultanecus differential equa-
tions system.

il = X2
K
X3 = gs.in x; + 10 :m X3
! 1#m.
. K R 1
X3 = ‘10'1“9,\'2 - T,\'g -+ —I:U
! F‘" 8~/
+ I 1=
R | N
v y \ P
Vi = 10K,8 my o
- . 1:10 gl
/-

Fig.9 Inverted pendulum with a DC motor

We shall carry out numerical calculations for the case
g=298mfs?, m =05 kg, | =03m K, =001 Nen/A.
Ky, =0.02Vsfrad, L = 20mH . k=010, In the simulations.
we set the desired state to an unstable equilibrium point to
test the nsefulness of the method.

)‘([ = X3
X9 = 32.67sInxy + 2.22x;
X3 = —X2 — 5.0x3 + 50.0u

Linearizing the system around the egnilibrinm point, we get
a linearized matrix A. As the cost function we choose the
quadratic function where Q is a unit matrix and R=1. Then,

Xz

6.0{

2.0t @I
v

No control

s
e

4.0 X1

With control

Fig.10 Phase diagram of solutions



the Riccati equation is calculated as follows:

96.73 16.53 0.66
K =1 1653 293 0.11
T 0.66 0.11 0.02

We set the Liapunov-like function Vi(x) using the K matrix.
Fig.10 shows the phase diagram of x; and x, of the solutions
solved by initial state (2.0,0.0,0.0).

It is observed that the system states with the control input
converge on the origin, on the other hand no control input
leads the system state to an equilibrium stable point (,0,0)
with oscillation. Fig.11 shows the time responses of V;(x)
and V) (x). Vi(x) satisfies the condition of a Liapunov func-

tion.

150

100

50 Vl (X)

1.0 2.0 3.0 t

~1000 Vl(x)
-2000 ¢

-3000

Fig.11  Time response of V3(x) and Vi(x)

Next we consider the periodic Liapunov-like function Va(x).

q K1 K1 K3 8in X
Valx) = ;(Sill X1.X2,X3) K2 Ko Koy X2
- K3 K3 Ny X3
K1y Kw Ko
Vax(x) = (sinxy.x0,%3) | K12 K22 Ko
K13 Koz Ka
cosx; 0 O
0 1 0
0 0 1

Va(x) = Vex{x)(x) = s( Vex(x)b)?

= (K1x1 + Kyasin xp) sin X2 — s{K 12X cos x,

+ Ay 8in X2 €08 Xa)2
The comparison of the phase curves of the solntions using
Vi(x) and Va(x) is represented in Fig.12 where the initial state
is (5.0,0.0).

It is observed that the state converges on the new equilib-
rinm state (27, 0) in the case using V3(x). The comparison of
the control inputs and the comparison of the valnes of the cost
function are represented in Fig.13 and Fig.14 respectively. It
is also seen that the state in the case using V2(x) moves to
the equilibrium point by smaller control input than the case
using ¥1(x)-
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X2
8.0
Vix) = Va(x)
4.0
N
2.0 0] z.0 w 8.0 8.0 x
-4.0
-8.0
V(x) = vi(x)
Fig.12 Phase diagram of solutions
u
$.0
6.0
a0l V(x) = Va(x)
o et
1.0 2.0 3.0 t
-3.0
V(x) = Vi(x)
-6.0
-9.0
Fig.13 Comparison of control inputs
Vi(x)
tsoff
100
50 i Va(x)
0 ‘_ A N
1.0 2.0 3.0 t
-1000 .
Va(x)
-2000
-3000
Va(x)

Fig.14 Comparison of Liapunov-like function

4. SUMMARY AND DISCUSSION

In this paper we have assumed a positive function as a can-
didate for the Liapunov-like function, and, using the control
inpet u = —R-1BT ¥, (x), we showed that a useful regulator
for a nonlinear system is obtained. For an arbitrarily chosen
V(x), it is theoretically feasible that this positive function



satisfies the condition for a Liapunov function by choosing a
But, if s becomes large, the
contrul input also has a large value coresponding to it, so the
control input within the limit is not always obtained. It is
necessary 1o choose the positive function such that the condi-

reasonable large coefficient s.

tion of a Liapunov function is satisfied as broadly as possible.
It is difficult to choose a Liapunov-like function that satisfies
the condition of the Liapunov function in a wide range area.
In general, if the area that satisfies BTVy(x)=01isa plane
or a line in a n—dumensional space, the condition f'(x) < 0is
not satisfied. But, as seen in numerical examples,the solition
pathed through the state which is not satisfied by V(x) <0
does not necessarily become unstable. Since a Liapunov func-
tion merely gives a sufficient condition for the system to be
asymptotically stable, the solution in the area V{(x) > 0 is
not always unstable. In Fig.8 and Fig.14 showing the time re-
sponse V{x) and 1"'(x), the times of V(x) > () exist, but over
all. it is seen that the condition of Liapunov function is satis-
fied. The solution’s curve in a phase diagram transverses the
area ¥V (x) > 0 and finally converges on the equilibrium point.
For a general n-dimensional system, describing the phase di-
agram of two priority variables for stability, we can see the
outline of the graph of V(x) = 0. Fig.15 represents a graph of
F5(x) = 0 in xyx2 plane when x3 = 0 and s=1.4. When s=1.0
the graph of Vi(x) = 0 dissapears.

X2

8.0

4.0

-4.0 0

il

I

Region of Vi(x) >0

-4

8

Fig.15

Generally, a cost function is given first in a control problem
which is mathematically defined. The problem is to determine
an optimal control which minimizes the cost function. Since
the cost function is calculated by the inverse optimal method
in this paper, it can not be given first arbitrarily. It is not
very important to minimize the cost function itself. The pur-
pose is to get the control input that leads the system to a
stable state with a fast and non-oscillatory manner. Though
a little experience and trial and error are still necessary to
determine the positive Liapunov-like function where the area
V(x) < 0 is wide and q(x) becomes a positive function, the
method proposed in this paper provides a strategy for design-
ing a nonlinear control system.
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