• 제목/요약/키워드: nonlinear partial differential equations

검색결과 126건 처리시간 0.024초

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

내부공진을 가진 보의 비선형 강제진동해석 (Nonlinear Analysis of a Forced Beam with Internal Resonances)

  • 이원경;소강영
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1897-1907
    • /
    • 1991
  • 본 연구에서는 세 모드 사이의 내부공진을 고려하여 강제진동 중인 보의 비선 형 해석을 다루고자 한다. 이 문제에 관심을 갖게 된 동기는 "연속계의 비선형해석 에서 더 많은 모드를 포함시키면 어떤 결과를 낳게 될 것인가\ulcorner" 라는 질문에서 생겨난 것이다.

CONTROL OF CARBON DIOXIDE REMOVAL RATE BY HOLLOW FIBER MEMBRANE CONTACTOR

  • Lee,Yong-Taek;Cho, Ingi;Lim, Hye-Jin;Ahn, Hyo-Seong;Hahm, Moon-Ky;Park, You-In;Lee, Kew-Ho
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 The 7th Summer Workshop of the Membrane Society of Korea
    • /
    • pp.48-51
    • /
    • 1999
  • To investigate numerically the removal behavior of carbon dioxide in a hollow fiber membrane contactor, the system controlling equations were developed including the nonlinear reversible reaction terms. The reversible chemical reactions were incorporated in the system controlling equations, resulting in the coupled nonlinear partial differential equations which could describe either the absorption of the desorption of carbon dioxide. The computer program was coded using the Fortran language and run with a personal computer to find out the effects of the system variables: the pressures of absorbed and desorbed gases, the absorbent flow rate, the concentration of potassium carbonate, the fiber diameter and the length.

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권3호
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

ATM용 크라운벨트의 횡진동 해석 (Transverse Vibration of ATM Crown belt)

  • 손영부;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1212-1217
    • /
    • 2007
  • ATM(automated teller machine) is a machine which can deposit and withdraw money directly. For effective transfer of bills in the machine, crown belts are used. In this paper, the transverse vibration of crown belt is investigated. The equation of motion of the belt is derived using Lagrange's equation. Galerkin's method is applied to convert the partial differential equation to the ordinary differential equations. Experimental investigations are performed on the belt system with the variation of pulley type, eccentricity, and tension. The results of numerical analysis show in good agreement with the experimental results.

  • PDF

Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with newtonian heat and mass conditions

  • Qayyum, Sajid;Hayat, Tasawar;Shehzad, Sabir A.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1636-1644
    • /
    • 2017
  • The main purpose of this article is to describe the magnetohydrodynamic stagnation point flow of Walter-B nanofluid over a stretching sheet. The phenomena of heat and mass transfer are based on the involvement of thermal radiation and chemical reaction. Characteristics of Newtonian heating are given special attention. The Brownian motion and thermophoresis models are introduced in the temperature and concentration expressions. Appropriate variables are implemented for the transformation of partial differential frameworks into sets of ordinary differential equations. Plots for velocity, temperature, and nanoparticle concentration are displayed and analyzed for governing parameters. The skin friction coefficient and local Nusselt and Sherwood numbers are studied using numerical values. The temperature and heat transfer rate are enhanced within the frame of the thermal conjugate parameter.

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • 제40권5호
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Dynamic stability of a metal foam rectangular plate

  • Debowski, D.;Magnucki, K.;Malinowski, M.
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.151-168
    • /
    • 2010
  • The subject of the paper is an isotropic metal foam rectangular plate. Mechanical properties of metal foam vary continuously through plate of the thickness. A nonlinear hypothesis of deformation of plane cross section is formulated. The system of partial differential equations of the plate motion is derived on the basis of the Hamilton's principle. The system of equations is analytically solved by the Bubnov-Galerkin method. Numerical investigations of dynamic stability for family rectangular plates with respect analytical solution are performed. Moreover, FEM analysis and theirs comparison with results of numerical-analytical calculations are presented in figures.

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.