• 제목/요약/키워드: nonlinear oscillations

검색결과 117건 처리시간 0.019초

THE INVESTIGATION OF MULTIPLICATION OF SUSPENSION BRIDGE EQUATION USING LINKING THEORY

  • Nam, Hyewon
    • Korean Journal of Mathematics
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2007
  • It is well known that a suspension bridge may display certain oscillations under external aerodynamic forces. Under the action of a strong wind, in particular, a narrow and very flexible suspension bridge can undergo dangerous oscillations. So it would be very contributive to determine under what conditions a similar situation cannot occur, and find out safe parameters of the bridge construction. In this paper, we investigate relations between the multiplicity of solutions and nonlinear terms in this suspension bridge equation using critical point theorem and linking theorem.

  • PDF

UPFC의 전력개통 동요 억제 효과 (Effect of UPFC for Damping Power System Oscillations)

  • 손광명;오태규;김학만;전진홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.887-889
    • /
    • 1998
  • This paper focuses on the simulation and ciontrol of the Unified Power Flow Controller (UPFC). This paper gives a brief outline of the initial results of the effect of the UPFC on the damping of the power system oscillations. The nonlinear simulation results show the effectiveness of each UPFC control variable and gives the future research direction.

  • PDF

2:1 내부공진을 갖는 케이블의 비선형 진동의 분기해석 (Bifurcation Analysis of Nonlinear Oscillations of Suspended Cables with 2-to-1 Internal Resonance)

  • 장서일
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1144-1149
    • /
    • 1998
  • A two degree-of-freedom model of suspended cables is studied for forced resonant response. The method of averaging is used to obtain first-order approximations to the response of the system. A bifurcation analysis of the averaged system is performed in the case of 2-to-1 internal resonance. Nonlinear coupled-mode motions are found to bifurcate from single-mode responses and further bifurcate to limit cycle motions via Hopf bifurcations. The limit cycle solutions undergo period doubling bifurcations to chaos.

  • PDF

연소 불안정 현상의 비선형적 특성 고찰 (Note on Nonlinearity of Combustion Instability)

  • 서성현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.240-243
    • /
    • 2003
  • Combustion instability phenomena have been observed in various different combustion systems. For each specific combustion system, pressure fluctuations measured during high frequency combustion instability presented many different characteristics. High frequency instability occurring in a lean premixed gas turbine combustor mar be dominantly affected by a nonlinear relation between pressure oscillations and heat release rate fluctuations, and gas dynamics plays a crucial role in determining an amplitude of a limit cycle for a liquid rocket thrust chamber. Combustion instability phenomena manifest their inherent nonlinear characteristics. One is a limit cycle and the other bifurcation described by nonlinear time series analysis.

  • PDF

쿨롱 마찰력 추정과 보상을 통한 역진자 시스템의 제어 성능 개선 (Estimation and Compensation of the Coulomb Friction in an Inverted Pendulum)

  • 박덕기;좌동경;홍석교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권11호
    • /
    • pp.483-490
    • /
    • 2006
  • When the nonlinearities, such as friction and backlash, are not considered in the controller design, undesirable oscillations can occur in the steady-state response of a control system. This paper deals with a method to reduce oscillations that often appear in the steady-state response of a pendulum system, which is controlled by a state feedback controller based on the linearized system model. With an assumption that the oscillations shown in the steady-state are caused by the Coulomb friction, we improve the performance of stabilization and tracking by estimating and compensating for the Coulomb friction in the pendulum system. Experimental results show that the control performance can be improved sufficiently by the proposed method, when it is applied to an inverted cart pendulum which is a multi-variable unstable system. Furthermore, we could see that the Coulomb friction model used in the estimation of the friction is valid in applying the suggested method.

매개 가진되는 얇은 외팔보의 비선형 진동 안정성 (Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation)

  • 방동준;이계동;조한동;정태건
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.

전산공력음향학을 위한 적응형 비선형 인공감쇄모형 (Adaptive Nonlinear Artificial Dissipation Model for Computational Aeroacoustics)

  • 김재욱;이덕주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.11-19
    • /
    • 2001
  • An adaptive nonlinear artificial dissipation model is presented for performing aeroacoustic computations by the high-order and high-resolution numerical schemes based on the central finite differences. An effective formalism of it is devised by combining a selective background smoothing term and a well-established nonlinear shock-capturing term which is for the temporal accuracy as well as the numerical stability. A conservative form of the selective background smoothing term is presented to keep accurate phase speeds of the propagating nonlinear waves. The nonlinear shock-capturing term that has been modeled by the second-order derivative term is combined with it to improve the resolution of discontinuities and stabilize the strong nonlinear waves. It is shown that the improved artificial dissipation model with an adaptive control constant which is independent of problem types reproduces the correct profiles and speeds of nonlinear waves, suppresses numerical oscillations near discontinuity and avoids unnecessary damping on the smooth linear acoustic waves. The feasibility and performance of the adaptive nonlinear artificial dissipation model are investigated by the applications to actual computational aeroacoustics problems.

  • PDF

Nonlinear Feedback Linearization-Full Order Observer/Sliding Mode Controller Design for Improving Transient Stability in a Power System

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.184-192
    • /
    • 1998
  • In this paper, we present a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), to obtain smmoth control as a linearized controller in a linear system (or to cancel the nonlinearity in a nonlinear system), and to solve the problem of the unmeasurable state variables as in the conventional SMC. The proposed controller is obtained by combining the nonlinear feedback linearization-sliding mode control (NFL-SMC) with the full order observer (FOO)and eliminates the need to measure all the state variables in the traditional SMC. The proposed controller is applied to the nonlinear power system stabilizer (PSS) for damping oscillations in a power system. The effectiveness of the proposed controller is verified by the nonlinear time-domain simulations in case of a 3-cycle line-to-ground fault and in case of the parameter variation for the AVR gain K\ulcorner and for the inertia moment M.

  • PDF

PERIODIC OSCILLATIONS OF A PARTICLE NONLINEARLY SUPPORTED FROM TWO POINTS

  • Oh, Hye-Young
    • Journal of applied mathematics & informatics
    • /
    • 제8권2호
    • /
    • pp.613-625
    • /
    • 2001
  • In this paper, we investigate a simplified model of a particle suspended elastically from two towers by two nonlinear elastic springs, with a restoring force similar to Hooke’s law under extension and with no resistance to compression. Numerical results are presented, showing the solutions can be either of the same period oscillation the forcing term, can be a subharmonic response of multiple period, or can be noisy periodic which is apparently chaotic. Multiplicity of periodic solutions for certain physical parameters are demonstrated.

Nonlinear Acoustic-Pressure Responses of Oxygen Droplet Flames Burning in Gaseous Hydrogen

  • Chung, Suk-Ho;Kim, Hong-Jip;Sohn, Chae-Hoon;Kim, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.510-521
    • /
    • 2001
  • A nonlinear acoustic instability of subcritical liquid-oxygen droplet flames burning in gaseous hydrogen environment are investigated numerically. Emphases are focused on the effects of finite-rate kinetics by employing a detailed hydrogen-oxygen chemistry and of the phase change of liquid oxygen. Results show that if nonlinear harmonic pressure oscillations are imposed, larger flame responses occur during the period that the pressure passes its temporal minimum, at which point flames are closer to extinction condition. Consequently, the flame response function, normalized during one cycle of pressure oscillation, increases nonlinearly with the amplitude of pressure perturbation. This nonlinear response behavior can be explained as a possible mechanism to produce the threshold phenomena for acoustic instability, often observed during rocket-engine tests.

  • PDF