• Title/Summary/Keyword: nonlinear operator equations

Search Result 85, Processing Time 0.019 seconds

ON A DISCUSSION OF NONLINEAR INTEGRAL EQUATION OF TYPE VOLTERRA-HAMMERSTEIN

  • El-Borai, M.M.;Abdou, M.A.;El-Kojok, M.M.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Here, we consider the existence and uniqueness solution of nonlinear integral equation of the second kind of type Volterra-Hammerstein. Also, the normality and continuity of the integral operator are discussed. A numerical method is used to obtain a system of nonlinear integral equations in position. The solution is obtained, and many applications in one, two and three dimensionals are considered.

  • PDF

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

INVARIANT CUBATURE FORMULAS OVER A UNIT CUBE

  • Kim, Kyoung-Joong;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.913-931
    • /
    • 1998
  • Using invariant theory, new invariant cubature formulas over a unit cube are given by imposing a group structure on the formulas. Cools and Haegemans [Computing 40, 139-146 (1988)] constructed invariant cubature formulas over a unit square. Since there exists a problem in directly extending their ideas over the unit square which were obtained by using a concept of good integrity basis to some constructions of invariant cubature formulas over the unit cube, a Reynold operator will be used to obtain new invariant cubature formulas over the unit cube. In order to practically find integration nodes and weights for the cubature formulas, it is required to solve a system of nonlinear equations. With an IMSL subroutine DUNLSF which is used for solutions of the system of nonlinear equations, we shall give integration nodes for the new invariant cubature formulas over the unit cube depending on each degree of polynomial precision.

  • PDF

STABILITY IN THE α-NORM FOR SOME STOCHASTIC PARTIAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Diop, Mamadou Abdoul;Ezzinbi, Khalil;Lo, Modou
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.149-167
    • /
    • 2019
  • In this work, we study the existence, uniqueness and stability in the ${\alpha}$-norm of solutions for some stochastic partial functional integrodifferential equations. We suppose that the linear part has an analytic resolvent operator in the sense given in Grimmer [8] and the nonlinear part satisfies a $H{\ddot{o}}lder$ type condition with respect to the ${\alpha}$-norm associated to the linear part. Firstly, we study the existence of the mild solutions. Secondly, we study the exponential stability in pth moment (p > 2). Our results are illustrated by an example. This work extends many previous results on stochastic partial functional differential equations.

EQUATIONS OF MOTION FOR CRACKED BEAMS AND SHALLOW ARCHES

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.405-432
    • /
    • 2022
  • Cracks in beams and shallow arches are modeled by massless rotational springs. First, we introduce a specially designed linear operator that "absorbs" the boundary conditions at the cracks. Then the equations of motion are derived from the first principles using the Extended Hamilton's Principle, accounting for non-conservative forces. The variational formulation of the equations is stated in terms of the subdifferentials of the bending and axial potential energies. The equations are given in their abstract (weak), as well as in classical forms.

CONTRACTION MAPPING PRINCIPLE AND ITS APPLICATION TO UNIQUENESS RESULTS FOR THE SYSTEM OF THE WAVE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.197-203
    • /
    • 2008
  • We show the existence of the unique solution of the following system of the nonlinear wave equations with Dirichlet boundary conditions and periodic conditions under some conditions $U_{tt}-U_{xx}+av^+=s{\phi}_{00}+f$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, ${\upsilon}_{tt}-{\upsilon}_{xx}+bu^+=t{\phi}_{00}+g$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, where $u^+$ = max{u, 0}, s, t ${\in}$ R, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator. We first show that the system has a positive solution or a negative solution depending on the sand t, and then prove the uniqueness theorem by the contraction mapping principle on the Banach space.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

APPROXIMATING RANDOM COMMON FIXED POINT OF RANDOM SET-VALUED STRONGLY PSEUDO-CONTRACTIVE MAPPINGS

  • LI JUN;HUANG NAN JING
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.329-341
    • /
    • 2005
  • In this paper, we introduce new random iterative sequences with errors approximating a unique random common fixed point for three random set-valued strongly pseudo-contractive mappings and show the convergence of the random iterative sequences with errors by using an approximation method in real uniformly smooth separable Banach spaces. As applications, we study the existence of random solutions for some kind of random nonlinear operator equations group in separable Hilbert spaces.