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INVARIANT CUBATURE FORMULAS
OVER A UNIT CUBE

KyouNG JooNG KiM AND MAN SUK SONG

ABSTRACT. Using invariant theory, new invariant cubature formu-
las over a unit cube are given by imposing a group structure on the
formulas. Cools and Haegemans [Computing 40, 129-146 (1988)] con-
structed invariant cubature formulas over a unit square. Since there
exists a problem in directly extending their ideas over the unit square
which were obtained by using a concept of good integrity basis to
some constructions of invariant cubature formulas over the unit cube,
a Reynold operator will be used to obtain new invariant cubature
formulas over the unit cube. In order to practically find integration
nodes and weights for the cubature formulas, it is required to solve a
system of nonlinear equations. With an IMSL subroutine DUNLSF
which is used for solutions of the system of nonlinear equations, we
shall give integration nodes for the new invariant cubature formulas
over the unit cube depending on each degree of polynomial precision.

1. Introduction

The construction of cubature formulas for integration over simplexes
and cones was first given by Hammer, Marlowe and Stroud[8]. Hammer,
Wymore and Stroud[10, 9] obtained cubature formulas for low degrees
by taking the way to prescribe all kinds of integration nodes. Many
cubature formulas[22] for two particular weight functions were gained
by solving a system of non-linear equations for unknown parameters in
the manner described in Hammer and Stroud[9]. Since integration for-
mulas with high degree of polynomial precision were needed, especially
for shell analysis about sophisticated curved finite element, Laursen and
Gellert[12] studied such formulas for triangles. For low degrees Reddy
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and Shippy[15, 16] reduced the number of integration nodes over a tri-
angle required for achieving a desired integration accuracy by giving
changes in prescribing forms of integration nodes. In fact, Reddy and
Shippy’s assertions can be justified by some properties of invariant cu-
bature formulas which are explained in Section 2. Since a concept of
invariant polynomials was needed in studying error-correcting codes,
Sloane[19] was interested in the theory of invariant polynomials which
was one of the main branches of nineteenth century mathematics. Us-
ing the invariant theory, Cools and Haegemans(1] constructed invariant
cubature formulas over a unit square by imposing a group structure on
the formulas.

On the other hand, after Stroud and Secrest[22] discussed the rela-
tionship between integration formulas and orthogonal polynomials much
efforts were done to extend their results to more general cases (20,3 and
4]. Haegemans and Piessens[6, 7] constructed cubature formulas of de-
gree 7, 9 and 11 for symmetric planar regions by using orthogonal poly-
nomials. There have been proceeded efforts to reduce the number of
integration nodes required for achieving a desired accuracy. Recently
Gaussian cubature formulas having integration nodes which were based
on the common zeros of either quasi-orthogonal polynomials or orthog-
onal polynomials were treated in 2-dimensional case[18,17].

In this story of cubature formulas, it is natural and important to con-
struct cubature formulas for 3-dimensional case. But there exist some
problems in such a way to find cubature formulas by using either or-
thogonal or quasi-orthogonal polynomials. Firstly, dimHg_1 distinct real
common zeros of kth degree (quasi)orthogonal polynomials should exist
in order to construct a Gaussian cubature formula of degree of precision
2k — 1 where II¢_, is the set of polynomials of total degree k — 1 in d
variables. Secondly it is difficult to actually calculate dimII¢_, distinct
real common zeros of kth degree polynomials even though they exist[24].
Therefore the main purpose of this paper is to create new cubature for-
mulas over a unit cube through utilizing both Molien’s formula which
Cools and Haegemans|[1] treated in order to construct cubature formulas
over a unit square and some properties of Reynold operator which are
explained in Section 4. Since there exist problems in directly applying
some ideas of Cools and Haegemans to some constructions of invari-
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ant cubature formulas over the unit cube, the Reynold operator will be
used to obtain new invariant cubature formulas over the unit cube. One
among key points in extending 2-dimensional case to 3-dimensional case
is to generate a group, denoted by G™* in this paper, satisfying some
conditions which are mentioned in Section 3.

In Section 2, we shall treat general properties known about invariant
cubature formulas and mention Molien’s formula.

In Section 3, after defining a group G™** we shall derive each dimension
of homogeneous G"t-invariant polynomials of each degree.

In Section 4, new invariant cubature formulas over the unit cube will
be obtained by solving a system of non-linear equations which is de-
rived through some properties of the Reynold operator. Also the IMSL
library[11], DUNLSF, is used for solutions of the system of nonlinear
equations.

In Section 5, our results are examined and compared with the known
results for low degrees.

In Appendix we shall give integration nodes for invariant cubature
formulas over the unit cube depending on each degree of polynomial
precision.

2. Invariant cubature formula

We shall treat general properties known about invariant cubature for-
mulas and mention Molien’s formula needed to proceed our assertion.

Let C(R?) be all continuous functions defined over d-dimensional vec-
tor space R? and let Hﬁ be the set of polynomials of degree k in d vari-
ables. Let I : C(R%) — R be a linear functional of the form

(2.1) I(f) = /Q w(z)f (z)dz

where f € C(R%), Q C R? is a integration region and w(x) is a weight
function. We shall assume a notation N as the natural number, that is
a set {1,2,3,---}. An approximation of I,

(2.2) In(f) = Zwif(xi) (n € N)
i=1
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is called a cubature formula with weight w; € R\ {0} and nodes z; € R%.
I, is said to be of degree k if both I(p) = I,,(p) whenever p € II¢ and
I(g) # I.(q) for at least one ¢ € II¢ ;. Let G be a finite group of
linear transformations g : R* — R?. A function f(z) is said to be
invariant with respect to the group G if f(g(z)) = f(z) for any g € G
and z € ). Assume that the integration region {2 remains unchanged
under all transformations g € G and the weight function w(z) is invariant
with respect to G. A cubature formula I, is said to be G-invariant if
I.(f) = I.(f o g) holds for every ¢ € G and f € C(R%). When a G-
orbit was given as a set {g(y) : g € G} for a given y € R%, Miinzel
and Renner[14] showed that I, is a G-invariant cubature formula if and
only if the set of nodes is the union of several G-orbits and weights
corresponding to nodes of the same G-orbit are equal. For p € II¢ the
Reynold operator(23] “ * ” is defined as

(2.3) pe=Y E29
. IGl

where |G| denotes the order of G. Let all invariant polynomials of degree
k in d-variables with respect to GG be given by

(2.4) I,‘f’Gz{pGHﬁ :pog=p for every g € G}

and let C,‘f’c denote the direct complement of I ; in 2. When the
cubature formula (2.2) is G-invariant the following results(5] can be ob-
tained:

(2:5) I(p) =I.(p) =0

for every p € C’,‘iG and every n € N.

Moreover, Cools and Haegemans[2] mentioned that in order for the
formula (2.2) to be exact for all polynomials in II¢ it is necessary and
sufficient that (2.2) is exact for all those polynomials which are invariant
with respect to G if the formula (2.2) is G-invariant. We arrive at the
position to write down Molien’s formula that played an important role
in developing Cools and Haegemans’s assertion[l]. It is assumed that
for each ¢ > 0 homogeneous G-invariant polynomials of degree 7 form a
finite dimensional vector space over R of dimension ¢;.
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THEOREM 2.1 (Molien’s formula).
Let wy(g),- -+ ,wa(g) be the eigenvalues of g € G. Then

o0

i 1 1
29 X g X T weh T wed)
PROOF. See [19]. o

3. Molien’s formula for G™*

~For a proper G-invariant cubature formula, the group G must satisfy
two properties: the integration region (2 remains unchanged under all
transformations ¢ € G and the weight function w(z) is invariant with
respect to G. For example, Cools and Haegemans[1] selected that w(x) =
1 and

s o={(5 .55 (F %))

and constructed G-invariant cubature formulas over a unit square. What
group G can be adopted in order to make G-invariant cubature formulas
over a unit cube ? The key points in extending 2-dimensional case to
3-dimensional case lie in constructing invariant cubature formulas with
properties of both efficiency and appropriateness. That is, one stresses
the necessity of a group having as less order as possible in order to re-
duce total number of integration nodes required for achieving a desired
accuracy and the other does the need of the group inducing invariant
cubature formulas with evenly distributed integration nodes over inte-
gration region. From now, we shall assume both the integration region Q
as a unit cube, that is a set {(z,y,2) € R®:|z| <1,ly| <1and |2| <1},
and the weight function w(x) as an identity function.
We introduce the following matrices:

0 10
(3.2) Ryy={-1 00
0 01
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1 0 0
(3.3) R.=(0 0 1
0 -1 0
0 01
(3.4) Re:=| 0 10
-1 00

Note that R, plays a role of 90° rotation in zy-plane, R, also does
in y2-plane and R, also does in zz-plane.

DEFINITION 3.1. Let H be a set of linear transformations h : R¢ —
R®. A group {h1,ha, - ,hg) is said to be the group generated by the
generators h;’s € H where k€ N andi=1,2,.-. ,k.

DEFINITION 3.2.

(3.5) G™ = (Ryy, Ryz, Rs2).

Then we obtain the following Lemma 3.3.

LEMMA 3.3.

(3.6) |GTet| = 24.

PROOF. G™ = {I, Ryy, R2,, R3,, Ryz, R%,, R3,, Ruz, R2,, RS,

yz?

RoyRez, R2,Ros, R Resy Ry R2,, RS R2,, Ry RS, R2 RS, RS RS

Tr2? Tz’ rz)

RyZRiy) R'yzRa:z, R'yzngRa:z, RyZRgz’ RyzRingz7 Rnggszz}- D

Now we apply the group G™* to Theorem 2.1. Fortunately we obtain
a very simple form in the following Lemma 3.4.

LEMMA 3.4. The right hand side of (2.6) can be written as

1—¢%+1¢5 1+1¢°

(3.7) 1 —2)(1 - 3)(1 — t4) or (1—12)(1 —t4)(1 —~t6)
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LEMMA 3.4. The right hand side of (2.6) can be written as

1—¢t34+1¢8 or 1+1¢9

B Tea-ea-® * om0 -O0-F

PROOF. After determining all eigenvalues of each element of G™, it
is calculated straightforwardly. O

Thus we obtain a main result in this section.

THEOREM 3.5. Assume that G = G™* in Theorem 2.1. Then for
nonnegative integer ¢, the dimensions c¢;’s of homogeneous G”°*-invariant
polynomials of degree ¢ are given in the followings:

(38) 61263:c5:c7:0, 00=02:09=C11=1-
(3.9) cs=2, =3, cg=4, c10=75.
(3.10) Ci=Ci—2+Ci-4—Cig—Ci—10+ Ci-12 (i >12).

PROOF. By (2.6) and the second term of (3.7) we know that

oo
(3.11) 1+1° = (Z citi> (1 -8 —t* 434810 —¢12).
1=0

(3.8), (3.9) and (3.10) are obtained by comparing both sides of (3.11).0]
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4. Classifications of G™-orbits

We obtain a useful result (4.1) through relations between some prop-
erties of the Reynold operator and all invariant polynomials of degree k
in d-variables with respect to G.

THEOREM 4.1. Assume the “+” and I{ , are defined as (2.3) and
(2.4). Then

(4.1) g ={p.:peT}.

PROOF. We will denote the right hand side of (4.1) as RHS. Let
pE I,‘ci,G. Then for each ¢ € G, po g = p. We obtain that

(4.2) D pog=)_p=I[Glp.

geG geG
Therefore
1
(4.3) P=152_Pog.
[ ‘ 9€G

(i.e.) p € RHS. Let p, € RHS. For each h € G,

1 1
(4.4) proh=123 pogoh=1%) pog
Gl =2 1G] 72
because G is a group. Thus (4.1) is proved. (]

By using a concept of good integrity basis Cools and Haegemans(1]
found linear independent homogeneous invariant polynomials over the
unit square depending on each degree. But it is not reasonable to apply
the concept of good integrity basis to our case, that is the construction
of G™*-invariant cubature formulas over the unit cube, because the re-
sult of (3.7) forms a shape which is not easy in noticing a good integrity
basis for [ 3Grot' In order to overcome the above problem we shall use
the property given as (4.1). By acting the Reynold operator on each
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monomial given in Table 4.1 we obtain linear independent homogeneous
Gm°t-invariant polynomials depending on each degree. We shall call such
monomials given in Table 4.1 as generators to generate the linear inde-
pendent homogeneous G™!-invariant polynomials. The given generators
in Table 4.1 are obtained through observing results which are derived
by acting the Reynold operator on all monomials depending upon each
degree. In fact most values of the results are zero. That is, calculations
are not complicated thanks to symmetric position of integration nodes
induced by G™. As the degrees are increased, the generators for higher
degree can be obtained through the above explained procedure. But
we restrict our attention until degree 12. Note that the dimension of
homogeneous invariant polynomials of each degree is given in Theorem
3.5.

Table 4.1, Generators depending on each degree

degree enerators
g g
0 1
2 z2
4 1:4, x2y2
6 28, 2ty?, 229222
8 28,2692, iyt 2ty? 22
9 z5y3z
10 210, mgyz,x6y4,x6y2z2,x4y4z2
11 z7y32
12 212, 21092 2844 38,2,2 26,6 6,4,2 4,44

We stand at the position to discuss about all kinds of G"°t-orbits
introduced in Section 2. All kinds of G"°t-orbits are induced by the
following three cases of nodes:

case 1 (x,x,x).
case 2 (x,x,y), where z £ y.
case 3 (x,y,2 ), where z #£ y # 2.

The case 1 is divided into type I and III in Table 4.2, the case 2
into type II, IV and V and the case 3 into type VI and VII. Thus all
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G7°'-orbits are classified in the following Table 4.2. By identifying (2.1)
with (2.2) given as G™*'-invariant cubature formula for each generator
which is given in Table 4.1 it is obtained a system of nonlinear equations.
The IMSL library[11], DUNLSF, is used for solutions of the system of
nonlinear equations. The DUNLSF is a very complicated subroutine
with 12 parameters, requires initial guess estimates and different initial
estimates may give rise to very different results. When we execute a
program containing DUNLSF as a subroutine, a good choice of initial
guess estimates can save the runtime of the program. Thus we obtain all
results about the found (1, t2,t3, 4, ts, 6, t7) depending on each degree
in the following Table 4.3 and such all results are found as optimal in the
sense that it will cause a system of conflicting nonlinear equations if we
choose another combination of (¢1,ts,ts,t4, ts,ts, t7) to induce less total
nodes depending on each degree of polynomial precision. For example,
for degree 7 if we choose another combination to induce less nodes than
27 nodes it will cause conflicting nonlinear equations.

Table 4.2. All types of G™¢-orbits

types number per type weights representative #
for each orbit

I t1 w1 (0,0,0) 1
11 to w25 (24,0, 0) 6
111 i3 W3¢ (.’t,‘, x;, Il:,') 8
v t4 wy,i (:l:,’,:l:i, 0) 12
v ts Ws,i (x4, Ti, Ys) 24
VI te we,i (1:1', Yis 0) 24

VII ty wr,i (i, Yir 21) 24

The “#” column denotes the order of each orbit obtained by acting
the group G"° on representative for the orbit.
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Table 4.3. Optimal choice for (¢1,t2,ts3,t4,ts5,t6,t7)

degree dim t; to t3 ts ts tg ty # of nodes
1 1 1 0 0 0 0 0 0 1
3 2 0 1 0 0 0 0 0 6
5 4 0 1 1 0 0 0 0 14
7 7 1 1 1 1 0 0 0 27
7 7 1 1 0 0 0 0 1 31
7 7 0 1 1 0 1 0 0 38
8 11 1 1 2 0 0 0 1 47
9 12 1 2 2 0 0 1 0 53
9 12 1 1 1 0 0 1 1 63
10 17 1 2 2 0 0 0 2 77
11 18 1 2 2 1 1 0 1 89
11 18 1 1 3 1 1 0 1 91
12 25 1 3 3 1 1 1 1 127
12 25 1 2 2 1 1 1 2 137

5. Discussion

Cools and Haegemans’s results[l] over the unit square are known as
best in the sense that the number of integration nodes which are used
in cubature formulas depending on each degree of polynomials precision
is minimal under the assumption that the location of the integration
nodes should form a symmetric shape. Since we can obtain the Cools
and Haegemans’s results if our construction of cubature formulas over
the unit cube is restricted to the unit square, we can expect good re-
sults over the unit cube. For low degrees Hammer and Stroud[9] made
some cubature formulas over the unit cube not by our method to use
invariant properties but by a classical method to prescribe all kinds of
integration nodes, their results except for degree 5 are known as best
in the above-mentioned sense about Cools and Haegemans’s results and
their results are given in Table 5.1. Exceptionally, for degree 5 Stroud[21]
constructed 13-point cubature formula over the unit cube by a particular
choice of integration nodes. For low degrees results equal to the Ham-
mer and Stroud’s products are given in Appendix. For degree 7 new two
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formulas are additionally obtained, one is 31-node formula having both
all interior nodes to the unit cube and only one negative weight and the
other is 38-node formula having both all positive weights and all interior
nodes to the unit cube. For degree 8 new 47-node formula having both
all positive weights and all interior nodes to the unit cube is obtained.
For degree 9 new two formulas are given, one is 53-node formula having
both some negative weights and some exterior nodes to the unit cube
and the other is 63-node formula having both all positive weights and
all interior nodes to the unit cube. For degree 10 new 77-node formula
having both negative weights and some exterior nodes to the unit cube
is obtained. For degree 11 new two formulas are given, one is 89-node
formula having negative weights and the other is 91-node formula hav-
ing both all positive weights and all interior nodes. For degree 12 new
two formulas are obtained, one is 127-node formula having both negative
weights and exterior nodes to the unit cube and the other is 137-node
formula having both some negative weights and nearly all interior nodes.
Thus all results are given in Table 5.1. Note that some cubature formulas
over the unit cube can be obtained by taking the way to consecutively
product one dimensional Gaussian cubature formula and such formulas
are defined as Gaussian product cubature formulas. The “product” col-
umn in Table 5.1 means the total number of nodes for Gaussian product
cubature formulas depending on degrees.

For the purpose of exactness of results, the following integral over the
unit cube 2 is considered: For nonnegative integer o, 3 and v

(5.1) T = / / / Y 2P dzdydz.

Qo<arptq<k
In particular, the integral results for cubature formulas of high degrees
are compared in Table 5.2. The exact values in Table 5.2 are directly
calculated. In fact the difference between the exact value of T} and the
approximate value by the nodes given in Appendix corresponding to each
degree k of polynomial precision is at least exact up to 15 decimal digits.

For the purpose of comparison of results, the following integrals over
the unit cube Q) are considered at Table 5.3 and Table 5.4.

(5.2) i = ///Q cos(z + y + z)dzdydz = 6sin(1) — 2sin(3).
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(5.3) Vo = /// exp(z +y + 2)dzdydz = €3 — 3e 4+ 3¢ — 73,
Q

(5.4) V3:/// \/w+y+z+3d:vdydz:%(\/6_7—3*27—&-3*\/57).
Q

For even n the Composite Simpson’s rule with n subintervals can be
written as

(n/2)-1 n/2

b
/f(m)dm:% fla)+2 Z f($2j)+42f($2j—1)+f(b)

=1 =1

where f(z) is a function defined on a closed interval [a,b], h = (b—a)/n
and z; = a + jh for each j = 0,1, .- ,n. The “Product Composite
Simpson’s rule” columns in Table 5.3 are obtained by taking the way to
consecutively product one dimensional Composite Simpson’s rule.

Table 5.1. Comparison of cubature formulas over a unit cube

degree [21] [9] product Appendix
1 1 1 1
3 6 8 6
5 13 14,19 27 14
7 27,34 64 27,31,38
8 47
9 125 53,63
10 77
11 216 89,91
12 127,137

The “product” column is explained in Section 5.

Calculations are executed in double precision on PC equipped with
Pentium processor through utilizing Microsoft Fortran Powerstation
Compiler[13]. In Appendix, the nodes for G™!-invariant cubature for-
mula over the unit cube depending on each degree of polynomial precision
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are given. Note that invariant cubature formulas in n-dimensional space
can be considered by using the techniques presented in this paper if it is
possible to find a group G in n-dimensional space corresponding to the

group G™* in our case.

Table 5.2. Comparison of numerical results

T

cubature formulas

exact values

T7 (38 nodes)
Ts (47 nodes)
Ts (63 nodes)
T1o (77 nodes)
T11 (91 nodes)

T12 (137 nodes)

.151280423280423D--02
.168956613756614D+402
.168956613756614D+-02
.183814526214526D+-02
.183814526214526D+4-02

.198192604714509D+02

.151280423280423D+02
.168956613756614D+-02
.168956613756614D+-02
.183814526214526D+-02
.183814526214526D+-02

.198192604714509D+-02

Table 5.3. Product Composite Simpson’s rule

Product

rule

Composite Simpson’s

integrals exact values
n=2(27 nodes) n=8(4,913 nodes) n=32(35,937 nodes)
V1 4.7665859 4.8571602 4.7668985 4.7665871
V2 12.984543 13.178602 12.985382 12.984546
V3 13.640450 13.623247 13.640284 13.640449

Table 5.4. Cubature formulas by integration nodes given in Appendix

integrals exact values deg=7(27 nodes) deg=7(38 nodes) deg=8(47 nodes)
1% 4.7665859 4.7657660 4.7660666 4.7665805
Vo 12.984543 12.983436 12.983816 12.984549
V3 13.640450 13.641093 13.640964 13.640441
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APPENDIX. Nodes for invariant cubature formulas

degree =1 nodes=1
weight x

y

2

8.000000000000000 .000000000000000 .000000000000000 .000000000000000

degree =3 nodes =6
weight x

1.333333333333333 1.000000000000000 .000000000000000 .000000000000000

degree = 5 nodes = 14
weight X

Y

y

z

zZ

.886426592797784 .795822425754222 .000000000000000 .000000000000000
.335180055401662 .758786910639328 .758786910639328 .758786910639328

degree = 7 nodes = 27
weight X

y

Z

.788073482744211 .000000000000000 .000000000000000 .000000000000000
.499369002307720 .848418011472252 .000000000000000 .000000000000000
.478508449425127 .652816472101691 .652816472101691 .652816472101691

.032303742334037 1.106412898626717 1.106412898626717 .000000000000000

degree = 7 nodes = 31
weight X

-1.275362318840587 .000000000000000 .000000000000000 .000000000000000

y

Z

.871111111111112 .585540043769119 .000000000000000 .000000000000000
.168695652173913 .694470135991705 .937161638568208 .415659267604065

degree = 7 nodes = 38

weight X
.295189738262623 .901687807821291
.404055417266202 .408372221499475
.124850759678944 .859523090201055

degree = 8 nodes = 47

weight X
.451903714875209 .000000000000000
.299379177352344 .782460796435947
.300876159371237 .488094669706371
.049484325587704 .862218927661482
.122872389222467 .281113909408340

y

.000000000000000
.408372221499475
.859523090201055

y

.000000000000000
.000000000000000
.488094669706371
.862218927661482
.944196578292009

4

.000000000000000
.408372221499475
.414735913727988

Z

.000000000000000
.000000000000000
.488094669706371
.862218927661482
.697574833707236
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degree =9 nodes = 53

weight
.551726616220070

x y z

.000000000000000 .000000000000000 .000000000000000

-.039815382483699 1.168919328946080 .000000000000000 .000000000000000

.291276920125688
.097942099058285
.365400985686203
.093031644998837

.813846360001057 .000000000000000 .000000000000000
.821976265563318 .821976265563318 .821976265563318
.515144823456534 .515144823456534 .515144823456534
.650007853956632 1.017168937265364 .000000000000000

degree = 9 nodes = 63

weight
.475494777063152
.204420910853443
.285138399553968
.114000479465275
.053369210592410

x y z

.000000000000000 .000000000000000 .000000000000000
-.715325892816490 .000000000000000 .000000000000000
-.495344936668094 -.495344936668094 -.495344936668094
.574088934357702 .919080086799122 .000000000000000
.556745749451503 .901819045276726 .901819045276726

degree = 10 nodes = 77

weight

X y z

-.420319339835990 .000000000000000 .000600000000000 .000000000000000

.091997951678989
.360442603230160
.125224364468651
.053615880583340
.151750984165498
.026372101249717

.928948149609317 .000000000000000 .000000000000000
.453893457051262 .000000000000000 .060000000000000
.510353784105911 .510353784105911 .510353784105911
.842746471299711 .842746471299711 .842746471299711
.251657335074872 .593030194462684 .856662793563785
.373600837415278 1.019819719217013 .843706182617256

degree = 11 nodes = 89

weight
.313745381025670
.261504969818370

X y z

.000000000000000 .0000060000000000 .000000000000000
.713380567938806 .0000000000000G0 .000000000000000

-.031924390408240 .912650951986862 .000000000000000 .000000000000000

.091458658607678
.235430080669983
.123866698630940
.015007743761030
.076961458102344

.749631791047098 .749631791047098 .749631791047098
.447730316999687 .447730316999687 .447730316999687
.815452385224494 .815452385224494 .000000000000000
.975064418273972 .975064418273972 .599272378395484
.952194555140010 .378469352111259 .378469352111259



(1]
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degree = 11
weight
.310761779537515
.202477073612799
.080444795437134
.014740557641599
.244143729769331
.145199345860119
.022614296138822
.061441994097835

nodes = 91

X

.000000000000000
.812614334099629
.745551245202776
.911057234173168
.402153741690512
.734668286997006
.941244857210604
.965099665512710

y

.000000000000000 .
.000000000000000 .
.745551245202776 .
.911057234173168 .
.402153741690512 .
.734668286997006
.941244857210604
.450799935114511 .

z
000000000000000
000000000000000
745551245202776
911057234173168
402153741690512

.000000000000000
.353902814596628

450799935114511
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degree = 12 nodes = 127

weight X y z
-.073928031695602 .000000000000000 .000000000000000 .000000000000000
.010477901534402 1.511521614586340 .000000000000000 .000000000000000
-.009844095092341 1.518036150896987 .000000000000000 .000000000000000
.256679894701887 .478945364485381 .000000000000000 .000000000000000
.008524241405641 .931296821014687 .931296821014687 .931296821014687
-027746619705925 .800861835516696 .800861835516696 .800861835516696
.189643044383209 .501261758656610 .501261758656610 .501261758656610
.005698078501484 1.010788881812456 1.010788881812456 .000000000000000
.059563828742259 .850441900836910 .850441900836910 .385834359819586
.121048699150332 .875969864984466 .468783976480477 .000000000000000
.013319040393071 1.029692626670935 .642769304172527 .642769304172527

degree = 12 nodes = 137

weight x y z
.196405496216727 .000000000000000 .000000000000000 .000000000000000
.193518411882601 .702454015165759 .000000000000000 .000000000000000
-.060876307453592 .906623578327549 .000000000000000 .000000000000000
.164609369967711 .358398560260120 .358398560260120 .358398560260120
.011560384831739 -.916622619558752 -.916622619558752 -.916622619558752
.015913522550276 .960988458433379 .960988458433379 .000000000000000
.043785409496396 .853137369797976 .853137369797976 .459595305781123
.084757991764383 .433691226656289 .930448523814206 .000000000000000
.015715740215575 1.002531510733000 .680321831958566 .680321831958566
.081050090532408 .685919914795626 .685919914795629 .304234417435723
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