• Title/Summary/Keyword: nonlinear numerical model

Search Result 1,607, Processing Time 0.026 seconds

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

A nonlinear stress analysis of nuclear containment building using microscopic material model (미시적 재료모델을 사용한 원전 격납건물의 비선형 응력해석)

  • 이상진;김현아;서정문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.320-324
    • /
    • 2000
  • Nonlinear stress analysis of nuclear containment building is carried out using microscopic concrete material model. The present study mainly focuses on the evaluation of the ultimate pressure capacity of idealized containment building in nuclear power plant. For this purpose, an eight-node degenerated shell element it adopted and an imaginary opening in the apex of containment building is allowed in FE model. From numerical analysis, the adopted concrete material model performs well and has a good agreement with the result obtained by using ABAQUS. Finally, we propose the present study as a benchmark test for nonlinear analysis of containment building.

  • PDF

Effect of cable stiffness on a cable-stayed bridge

  • Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • Cables are used in many applications such as cable-stayed bridges, suspension bridges, transmission lines, telephone lines, etc. Generally, the linear relationship is inadequate to present the behavior of cable structure. In finite element analysis, cables have always been modeled as truss elements. For these types of model, the nonlinear behavior of cables has been always ignored. In order to investigate the importance of the nonlinear effect on the structural system, the effect of cable stiffness has been studied. The nonlinear behavior of cable is due to its sag. Therefore, the cable pretension provides a large portion of the inherent stiffness. Since a cable-stayed bridge has numerous degrees of freedom, analytical methods at present are not convenient to solve this type of structures but numerical methods may be feasible. It is necessary to provide a different and more representative analytical model in order to present the effect of cable stiffness on cable-stayed bridges in numerical analysis. The characteristics of cable deformation have also been well addressed. A formulation of modified modulus of elasticity has been proposed using a numerical parametric study. In order to investigate realistic bridges, a cable-stayed bridge having the geometry similar to that of Quincy Bayview Bridge is considered. The numerical results indicate that the characteristics of the cable stiffness are strongly nonlinear. It also significantly affects the structural behaviors of cable-stayed bridge systems.

Numerical Nonlinear Stability of Traveling Waves for a Chemotaxis Model

  • Min-Gi Lee
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • We study the stability of traveling waves of a certain chemotaxis model. The traveling wave solution is a central object of study in a chemotaxis model. Kim et al. [8] introduced a model on a population and nutrient densities based on a nonlinear diffusion law. They proved the existence of traveling waves for the one dimensional Cauchy problem. Existence theory for traveling waves is typically followed by stability analysis because any traveling waves that are not robust against a small perturbation would have little physical significance. We conduct a numerical nonlinear stability for a few relevant instances of traveling waves shown to exist in [8]. Results against absolute additive noises and relative additive noises are presented.

Model updating with constrained unscented Kalman filter for hybrid testing

  • Wu, Bin;Wang, Tao
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1105-1129
    • /
    • 2014
  • The unscented Kalman filter (UKF) has been developed for nonlinear model parametric identification, and it assumes that the model parameters are symmetrically distributed about their mean values without any constrains. However, the parameters in many applications are confined within certain ranges to make sense physically. In this paper, a constrained unscented Kalman filter (CUKF) algorithm is proposed to improve accuracy of numerical substructure modeling in hybrid testing. During hybrid testing, the numerical models of numerical substructures which are assumed identical to the physical substructures are updated online with the CUKF approach based on the measurement data from physical substructures. The CUKF method adopts sigma points (i.e., sample points) projecting strategy, with which the positions and weights of sigma points violating constraints are modified. The effectiveness of the proposed hybrid testing method is verified by pure numerical simulation and real-time as well as slower hybrid tests with nonlinear specimens. The results show that the new method has better accuracy compared to conventional hybrid testing with fixed numerical model and hybrid testing based on model updating with UKF.

Investigation of Nonlinear Numerical Mathematical Model of a Multiple Shaft Gas Turbine Unit

  • Kim, Soo-Yong;Valeri P. Kovalevsky
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2087-2098
    • /
    • 2003
  • The development of numerical mathematical model to calculate both the static and dynamic characteristics of a multi-shaft gas turbine consisting of a single combustion chamber, including advanced cycle components such as intercooler and regenerator is presented in this paper. The numerical mathematical model is based on the simplified assumptions that quasi-static characteristic of turbo-machine and injector is used, total pressure loss and heat transfer relation for static calculation neglecting fuel transport time delay can be employed. The supercharger power has a cubical relation to its rotating velocity. The accuracy of each calculation is confirmed by monitoring mass and energy balances with comparative calculations for different time steps of integration. The features of the studied gas turbine scheme are the starting device with compressed air volumes and injector's supercharging the air directly ahead of the combustion chamber.

A Note on the Modified Scheme for Nonlinear Shallow-Water Equations (비선형 천수방정식의 보정차분기법)

  • 조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.197-200
    • /
    • 1999
  • An extension of the modified leap-frog scheme is made to solve the nonlinear shallow-water equations. In the extended model. the physical dispersion of the Boussinesq equations is replaced by the numerical dispersion resulted from the leap-frog finite difference scheme. The model is used to simulate propagations of a solitary wave over a constant water depth and a linearly varying water depth. Obtained numerical results are compared with available analytical and other numerical solutions. A reasonable agreement is observed.

  • PDF

Moments calculation for truncated multivariate normal in nonlinear generalized mixed models

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.377-383
    • /
    • 2020
  • The likelihood-based inference in a nonlinear generalized mixed model often requires computing moments of truncated multivariate normal random variables. Many methods have been proposed for the computation using a recurrence relation or the moment generating function; however, these methods rely on high dimensional numerical integrations. The numerical method is known to be inefficient for high dimensional integral in accuracy. Besides the accuracy, the methods demand too much computing time to use them in practical analyses. In this note, a moment calculation method is proposed under an assumption of a certain covariance structure that occurred mostly in generalized mixed models. The method needs only low dimensional numerical integrations.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

Storage Type Nonlinear Hydrological Forecasting Model (저류함수형(貯溜凾數型) 비선형(非線型) 수문예측모형(水文豫測模型))

  • Baek, Un Il;Yoon, Tae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.29-38
    • /
    • 1982
  • Nonlinear hydrological model containing the nonlinearity of effective rainfall, lag time and runoff is presented. In the evaluation of rainfall excess, the polynomial fitting method for total rainfall, 5 day antecedant rainfall and direct runoff is developed. In the application to actual watershed, the estimated model parameters of nonlinear lag model reflecting the nonlinearity of lag time are compared with the parameters, by both the fitting method and the correlation, model which are the modified version of the storage function model. The Successive Approximation Method in mathematical solution and Newton-Rhapson method in numerical solution are found to be superior to the conventional numerical graphic method in the analysis of nonlinear processes.

  • PDF