Abstract
An extension of the modified leap-frog scheme is made to solve the nonlinear shallow-water equations. In the extended model. the physical dispersion of the Boussinesq equations is replaced by the numerical dispersion resulted from the leap-frog finite difference scheme. The model is used to simulate propagations of a solitary wave over a constant water depth and a linearly varying water depth. Obtained numerical results are compared with available analytical and other numerical solutions. A reasonable agreement is observed.
비선형 천수방정식을 해석하기 위하여 보정 leap-frog 기법을 확장하였다. 차분화 과정에서 발생하는 수치분산을 조정하여 Boussinesq 방정식의 분산을 대치하도록 하였다. 새로이 개발된 보정 leap-frog 기법을 이용하여 일정수심 및 경사면을 진행하는 고립파를 모의하였다. 새로운 확장기법에 의해 계산된 자유수면변위는 기존의 해석해 및 수치해와 잘 일치한다.