A Note on the Modified Scheme for Nonlinear Shallow-Water Equations

비선형 천수방정식의 보정차분기법

  • 조용식 (세종대학교 토목환경공학과)
  • Published : 1999.12.01

Abstract

An extension of the modified leap-frog scheme is made to solve the nonlinear shallow-water equations. In the extended model. the physical dispersion of the Boussinesq equations is replaced by the numerical dispersion resulted from the leap-frog finite difference scheme. The model is used to simulate propagations of a solitary wave over a constant water depth and a linearly varying water depth. Obtained numerical results are compared with available analytical and other numerical solutions. A reasonable agreement is observed.

비선형 천수방정식을 해석하기 위하여 보정 leap-frog 기법을 확장하였다. 차분화 과정에서 발생하는 수치분산을 조정하여 Boussinesq 방정식의 분산을 대치하도록 하였다. 새로이 개발된 보정 leap-frog 기법을 이용하여 일정수심 및 경사면을 진행하는 고립파를 모의하였다. 새로운 확장기법에 의해 계산된 자유수면변위는 기존의 해석해 및 수치해와 잘 일치한다.

Keywords

References

  1. Transport Models for Inland and Coastal Waters Numerical modeling of free-surface flows that are two-dimensional in plan Abbott, M.B.;McCowan, A.D.;Warren, I.R.;H.B. Fisher(ed.)
  2. Ph. D. Thesis, Cornell Univ. Modelling of Surface Water Wave and Interfacial Wave Propagation Chen, Y.
  3. Coastal Engrg. J. v.40 no.2 A modified leap-frog scheme for linear shallow-water equations Cho, Y.-S;Yoon, S.B.
  4. J. Waterway, Port, Coastal and Ocean Engrg. v.120 no.6 Integral equation model for wave propagation with bottom frictions Liu, P.L.-F;Cho, Y.-S.
  5. The Applied Dynamic of Ocean Surface Waves Mei, C.C.