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Abstract. We study the stability of traveling waves of a certain chemotaxis model. The

traveling wave solution is a central object of study in a chemotaxis model. Kim et al.

[8] introduced a model on a population and nutrient densities based on a nonlinear dif-

fusion law. They proved the existence of traveling waves for the one dimensional Cauchy

problem. Existence theory for traveling waves is typically followed by stability analysis

because any traveling waves that are not robust against a small perturbation would have

little physical significance. We conduct a numerical nonlinear stability for a few relevant

instances of traveling waves shown to exist in [8]. Results against absolute additive noises

and relative additive noises are presented.

1. Introduction

In this paper, we study the stability of traveling waves of a certain chemotaxis
model. In a chemotaxis model, formation of traveling fronts is a central theme of
the study: let a long tube be filled with a nutrient that is to be consumed by a cer-
tain micro-organism, such as bacteria. Let a certain amount of bacteria population
be placed at the leftmost entrance of the tube. Conversion of nutrient to a bacteria
population at some rate would take place and eventually results in the exhastion
of nutrient at the place. If the bacteria is capable of moving from one place to
another, then those that move right will find a new opportunity of further growth
with a high nutrient density at the new place. As a proof that this does take place,
traveling wave solutions where the nutrient front retreats, and that of the bacteria
population propagates, comes with an important physical relevance.
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Kim et al. [8] introduced a following chemotaxis model:

(1.1)


ut = ∆

(
γ(n)u

)
+ r0nu,

nt = ϵ∆n− nu
for (t, x) ∈ (0, T )× Ω,

∇
(
γ(n)u

)
· ν = ∇n · ν = 0 for (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x), n(0, x) = n0(x) for x ∈ Ω.

Here Ω ⊂ Rn is a simply connected bounded open set with smooth boundary, u
is the population density, n is the nutrient density, r0 > 0 is the growth rate, and
ϵ > 0 is a small diffusion constant for the nutrient. Initial and boundary data are
assigned as above, where zero flux boundary conditions are imposed for both u and
n. ν is the outward normal vector. For the nonlinearty γ : [0,∞) → R, we assume

(1.2)
γ is smooth and bounded in every compact set of [0,∞)

γ(n) ≥ γ0 > 0 for every n for some γ0 > 0.

This chemotaxis model has been suggested from the consideration of non-fickian
flux law for diffusion, which is an independent and substantial subject of the random
walk in a heterogeneous medium. See the series of studies [7, 5, 6]. The key
difference from the classical Keller-Segel model [4] is to have a flux function as in
the first equation of (1.1)

J = −∇p(n, u), p(n, u) := γ(n)u.

As a consequence, migration of population is from the place where p is high to the
place p is low. The bacteria are supposed to sense this pressure p by sensing the
values of u and n at the place. The value of p is decided by the relative values of
n and u. For instance, if p is decreasing in n and increasing in u then migration
occurs from the place where the population is crowded, relative to the nutrient, to
the place that is less so. This type of chemotaxis model has attracted considerable
attention in recent years for a variety of applications (see [7, 1, 14]). Existence
theorems on related models also have been actively studied by those authors in
[12, 13, 3, 2, 11, 9, 10].

The measurements of this pressure p is done by measurements of n and u at the
place by the bacteria and the value of p is decided by the relative values of n and
u.

Consider one space dimensional Cauchy problem

(1.3)

{
ut =

(
γ(n)u

)
xx

+ r0nu,

nt = ϵnxx − nu
for (t, x) ∈ (0,∞)× R.

Kim et al. [8] proved the existence of traveling wave solutions of (1.3) for the case
ϵ = 0 that are of the form

u(t, x) = ū(x− ct), n(t, x) = n̄(x− ct), ξ = x− ct,(1.4)

(ū, n̄) → (u∗, 0) as ξ → −∞, (ū, n̄) → (0, n∗) as ξ → ∞.(1.5)
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Plugging in the ansatz (1.4) to (1.3), one obtains the system of ordinary differential
equations

(1.6)
−cū′ =

(
γ(n̄)ū

)′′
+ r0n̄ū,

−cn̄′ = ϵn′′ − n̄ū.

The existence of traveling waves are proved by phase space analysis of (1.6).
Because those traveling waves are constructed by solving the system (1.6), not

the system (1.3), once existence is established, the stability against a small per-
turbation as a solution of (1.3) is subjected to a further study. Any of traveling
waves that is not robust against a small perturbation would have little physical
significance.

In general, nonlinear stability is a difficult problem, in particular around this
non-steady state solution. The objective of this paper is thus to study numerical
nonlinear stability of traveling waves: we numerically construct the traveling wave
solutions of (1.6) and the computed data are prepared as an initial data of the
system (1.3). In this preparation, a small perturbation is added. The system (1.3)
with the perturbed initial data is then numerically solved until a finite time T > 0.
The precise test procedure will be specified in Section 4.

The remainder of this paper is organised as follows. In Section 2 we summarize
the existence results of traveling waves presented in [8] for completeness of our
discussion. In Section 3 we present numerical integration results done by python
SciPy Library for a few relevant instances of traveling waves. In Section 4 we present
the numerical stability results, and finally we give conclusions in Section 5.

2. Traveling Waves and Phase Space Analysis for (1.6)

In this section, the system of odes (1.6) is further discussed, which is a summary
of what are presented in [8]. For notational simplicity overlines on variables are
suppressed.

Since nu = cn′ for the case ϵ = 0, the first equation of (1.6) is integrated once
to have

−cu =
(
γ(n)u

)′
+ r0cn+ P0,

−cn′ = −nu,

for some integration constant P0. By imposing the condition (u, n) → (0, n∗) as
ξ → ∞ and using new variables (p, n) =

(
γ(n)u, n

)
, the system can be arranged in

the form

(2.1)
γ(n)p′ = −cp− r0c(n− n∗)γ(n),

γ(n)n′ =
np

c
.

Here, we have used the assumption (1.2) that γ(n) ≥ γ0 > 0 for every n.
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2.1. Equilibrium points and linearization

It is straightforward to verify that (2.1) has only two equilibrium points that
are

(p0, n0) =
(
r0n∗γ(0), 0

)
, (p1, n1) = (0, n∗).

This implies that u∗ in (1.5) is not an independent parameter but is decided as

u∗ = r0n∗.

Linearization around each equilibrium point is summarized below.

1. (p0, n0) is a saddle point:

Eigenvalues: λ1 = − c

γ(0)
, λ2 =

r0n∗

c
,

Eigenvectors: X1 =

(
1
0

)
X2 =

(
x
1

)
,

where x =
r0c

2γ(0)

r0n∗γ(0) + c2

(
n∗

γ′(0)

γ(0)
− 1
)
.

2. If c > c∗ = 2
√
r0n∗γ(n∗) then (p1, n1) is a stable node with two real and

negative eigenvalues:

Eigenvalues: Two roots λ̃1 and λ̃2 of λ2 +
c

γ(n∗)
λ+

r0n∗

γ(n∗)
= 0,

Eigenvectors: X̃1 =

(
1
n∗

cγ(n∗)λ̃1

)
X̃2 =

(
1
n∗

cγ(n∗)λ̃2

)
.

Phase space analysis [8] based on the discussion so far gives the following result:

Theorem 2.1. Fix n∗ > 0 and c > c∗. There exists a heteroclinic orbit that is an
intersection of the unstable manifold of (p0, n0) and the stable manifold of (p1, n1).
The heteroclinic orbit entirely lies in the first quadrant of pn-plane.

3. Numerical Construction of Traveling Waves

As stated in Theorem 2.1, the traveling wave exists as a heterocilinic orbit
of (2.1) that is a saddle-to-stable node connection. If (p̂, n̂) is any point on the
stable manifold of (p0, n0), integrating numerically (2.1) from (p̂, n̂) forward in time,
capturing the saddle-to-stable node connection, is not a stiff problem.

Based on that, in this section we numerically compute the saddle-to-stable node
connection. We specify the procedure below.
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1. We first let δ > 0 sufficiently small and set

(p̂, n̂) = (p0, n0) + δX2,

where X2 is the eigenvector in Section 2.1.

2. Let M > 0 be sufficiently large. We use SciPy Library to integrate (2.1) on
interval [0,M ] with initial data

(p(0), n(0)) = (p̂, n̂).

We present three instances of traveling waves. As discussed earlier, γ that is
decreasing in n corresponds to a chemotaxis model where migration of population
uccurs from a crowded place to uncrowded place. Note that the value x in the
eigenvector X2 will be negative in this case because γ′(0) < 0. γ that is increasing
in n also is relevant to a certain application. In this case, the sign of x in the

eigenvector X2 is decided by n∗
γ′(0)
γ(0) − 1. In case x > 0, one observes an overshoot

of p profile before it converges to 0 as ξ → ∞. See Figure 1 (c).
Considering the above, those three instances are specified below, including var-

ious wave speeds and parameters.

[A] γ : n 7→ 1

1 + n1.2
, r0 = 0.7, n∗ = 1.1, c = 1.5665 ≃ c∗(1 + 0.3),

[B] γ : n 7→ 1 + n1.5, r0 = 1.8, n∗ = 1.0, c = 3.5474 ≃ c∗(1 + 0.1),

[C] γ : n 7→ 1 + n, r0 = 1.2, n∗ = 2.1, c = 5.5900 ≃ c∗.

Numerically captured heteroclinic orbits are presented in Figure 1. In every case,
n has a retreating front and p has a propagating front. In wave C, we see the
overshoot of p profiles. On the other hands, in Figure 1 (a) and (b) where we have
x < 0, we observe p decreasing all the time in ξ converging to 0 and n increasing
all the time converging to n∗.
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Figure 1: Traveling waves of cases A, B, and C.
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4. Numerical stability of traveling waves

Any traveling wave solution that is not robust under a perturbation has little
physical significance. In this section, we conduct the numerical nonlinear stability
tests on three captured data in the preceding section. The specification of stability
test procedure is presented below.

4.1. Procedure of numerical stability test

1. Points on the heteroclinic orbit are collected, for j = 0, · · · , N−1 with h = M
N ,

that are (
ξj , p(ξj), n(ξj)

)
, ξj = jh.

Note that the heteroclinic orbits have been computed on sufficiently large
interval [0,M ] so that profiles of orbits are sufficiently flat near end points.
See Figure 1.

2. Preparation of (u, n) profiles. Since variables we integrate are p and n in
heteroclinic orbit, we take for j = 0, · · · , N − 1(

ξj , φ(ξj)
)
:=
(
ξj , u(ξj), n(ξj)

)
=
(
ξj ,

p(ξj)

γ(n(ξj))
, n(ξj)

)
.

3. Preparation of initial data U0. The system we will run is the cauchy problem
(1.3) in the wholse space R. In its approximation, computational domain
has to be large enough so that within a certain time T > 0 traveling wave
phenomena can be observed. For this reason, we take an interval [0, M̄ ]
with M̄ possibly larger than M as a computational domain for (1.3). The
heteroclinic orbit data is translated and extended to U0 data as follows.

For i = 0, · · · , N̄ − 1 xi = ih ∈ [0, M̄ ], N̄ =
M̄

h
,

(
xi, U0(xi)

)
=


(
ξ0, φ(ξ0)

)
if i < i0(

ξi−i0 , φ(ξi−i0)
)

if i0 ≤ i < i0 +N(
ξN−1, φ(ξN−1)

)
if i ≥ i0 +N

for i0 an integer shift factor.

4. Preparation of a perturbed initial data Ũ0. For a given U0, we consider two
types of absolute and relative perturbations: For i = 0, · · · , N̄ − 1

Ũ0(xi) = U0(xi) + η̄E(xi) for absolute additive noise, or

Ũ0(xi) = U0(xi)
(
1 + ηE(xi)

)
for relative additive noise
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for some E with ∥E∥∞ = 1. η̄, η > 0 are small parameters. η̄ measures the
level of absolute noises and η measures the level of relative noises.

5. Finally, we numerically solve (1.3) in [0, T ] × [0, M̄ ]. The time interval is
discretized as

For m = 0, · · · , K̄ − 1 tm = km, k =
T

K̄
.

For the parabolic solver, we simply used the explicit scheme:

ũ(tm, xj) = ũ(tm−1, xj) + kr0ñ(tm−1, xj)ũ(tm−1, xj)

+
k

h2

(
p(tm−1, xj−1)− 2p(tm−1, xj) + p(tm−1, xj+1

)
,

where p(tm, xj) :=
ũ

γ(ñ)
(tm, xj), and

ñ(tm, xj) = ñ(tm−1, xj)− kñ(tm−1, xj)ũ(tm−1, xj)

+
ϵk

h2

(
ñ(tm−1, xj−1)− 2ñ(tm−1, xj) + ñ(tm−1, xj+1

)
for m = 1 · · · K̄ − 1 and j = 1, · · · , N̄ − 2. Assuming M̄ is large enough, we
assigned the Dirichilet boundary condition, that is for every m(

ũ, ñ
)
(tm, x0) = φ(ξ0),

(
ũ, ñ

)
(tm, xN̄−1) = φ(ξN−1).



148 Min-Gi Lee

4.2. Results

In Figure 2 and 3 are the tests of wave A against an oscillatory sinusoidal
perturbation, i.e.,

E(x) = sin

(
2πx

M̄
ℓ

)
with ℓ = 10.
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Figure 2: Test of wave A against the sinusoidal absolute additive noise. For
the computation, h = 0.1, k = 0.005, η̄ = 0.01 have been used.

We first consider the severer absolute noises. Figure 2 presents snapshots of
p = uγ(n) and n profiles taken at time t = 0, 0.5, 1.0, and 5.0 with η̄ = 0.01. The
value of η̄ is the 1% of the maximum ∥(p, n)∥∞. Interesting behaviors against the
absolute additive noise are exhibited: Oscillations first seem to be stabilized as time
proceeds so that by the time around t = 1.0 we see almost plateu for both p and
n, but this attenuated oscillation is then amplified in later time. This behavior is
more drastically observed with absolute noise at η̄ = 0.05 in Figure 3.

This illustrates that the shape of traveling wave is maintained for a short time
in a stable manner, but due to the reaction of the system, traveling wave can be
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oscillatory in later time.
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Figure 3: Test of wave A against the sinusoidal absolute additive noise. For
the computation, h = 0.1, k = 0.005, η̄ = 0.05 have been used.

Note that the two end states at ±∞ have nearly 0 state for one of n and u,
or the added error in Figure 2 and 3 in relative sense are huge. Furthermore, in
the second equation (1.3) for n, currently we have no diffusion (ϵ = 0), which is an
extreme case. Considering those, behaviors seems not drastically bad in the sense
that the traveling wave does not disappear.

In Figures 4, 5, and 6 are tests against relative additive noises of 10% levels.
We conducted computations until t = 5.0. What are in the last row of each of
Figures 4, 5, and 6 are the snapshots at t = 1.0, 2.0, 3.0, 4.0, and 5.0 from the
left to right. We considered an ambitious white noise for these tests where E(xi) is
a random variable valued in [−1, 1] with a uniform probability. To add this white
noise implies that the initial data are discontinuous and highly oscillatory.

We see in Figure 4 (a) the farily clean traveling wave fronts of u against the
relative additive white noises. White noise in n cannot be flatten out simply because
the equation for n in (1.3) is an ode.

In Figure 6 (a) for wave C, we presented the profile of p in place of u, to
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illustrates the overshoot before the convergence to 0 as x → ∞. Figure 6 (a) clearly
shows the recovery to the clean profile of p traveling with an overshoot.
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Figure 4: Snapshots of u and n.
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Figure 5: Snapshots of u and n.
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Figure 6: Snapshots of u and n.
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5. Conclusions

In this paper, numerical stability of traveling waves of (1.3) against pertur-
bations has been tested on three instances. The traveling waves themselves were
computed by Python SciPy Library, and are assigned as initial data for the system
(1.3) after adding a perturbation. We tested both the absolute and relative pertur-
bations. Considering that the end states of traveling waves contain the zero state
in one of u and n, the added absolute additive perturbations near the zero state
are huge ones if measured in relative sense. Yet we observed fairly stable behaviors
against the absolute additive noise in Figure 2 and 3. Against the relative additive
noise, traveling waves seem to be highly robust as seen in Figure 4, 5, and 6.
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