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Abstract
The likelihood-based inference in a nonlinear generalized mixed model often requires computing moments

of truncated multivariate normal random variables. Many methods have been proposed for the computation us-
ing a recurrence relation or the moment generating function; however, these methods rely on high dimensional
numerical integrations. The numerical method is known to be inefficient for high dimensional integral in accu-
racy. Besides the accuracy, the methods demand too much computing time to use them in practical analyses. In
this note, a moment calculation method is proposed under an assumption of a certain covariance structure that
occurred mostly in generalized mixed models. The method needs only low dimensional numerical integrations.
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1. Introduction

Suppose Y = (Y1, . . . ,Yn)′ ∼ N(µ,Σ), a multivariate normal with mean µ and covariance matrix Σ,
and we are interested in E(Yκ11 · · · Y

κn
n | a < Y < b) where κi’s are nonnegative integers, a = (a1, . . . , an)′

and b = (b1, . . . , bn)′. We wish to compute product moments in a truncated multivariate normal
distribution with Yi truncated at the lower limit ai and the upper limit bi. In this truncation, some or
all of the ai can be −∞ and some or all of the bi can be ∞. When all the bi’s are ∞, the random
vector Y(> a) is called lower truncated, whereas Y(< b) is called upper truncated when all the ai’s are
−∞. Note that the computations of the moment for the upper and lower truncated multivariate normal
distributions are the same. The other type is double truncation a < Y < b, which can have both lower
and upper truncation points.

There is extensive literature dealing with the moment under different conditions derived from the
types of truncations (one-sided, double-sided) and the number of variables (univariate, bivariate, mul-
tivariate), for instance Rosenbaum (1961) provided a formula for the moments of upper truncated bi-
variate normal variables. Shah and Parikh (1964) extended this result. They gave recurrence relations
between moments for computing doubly truncated bivariate normal variables. Begier and Hamdan
(1971) gave an explicit formula for the moment of doubly truncated bivariate normal variables with
the same lower limit points. A more general result for the truncated bivariate normal can be found in
Muthén (1990).

The multivariate case, Tallis (1961) gave an explicit formula for the first two moments of an upper
truncated standard multivariate normal distribution. His results was extended to a general covariance
matrix case by Amemiya (1974) and Lee (1979). Using recurrence relations, they gave the first two
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moments of a one–sided truncated multivariate normal distribution. Manjunath and Wilhelm (2012)
extended these results further to the doubly truncated case. Using the moment generating function,
they provided an explicit expression for the mean and variance of a multivariate normal distribution
with arbitrary double truncation. The results were implemented in an R package, tmvtnorm (Wilhelm
and Manjunath, 2010).

The likelihood-based inference in a nonlinear generalized mixed model requires computing up to
the 4th order moments of truncated multivariate normal random variables. That is, an algorithm meets
our purpose only if it can compute E(Yκ11 · · · Y

κn
n | a < Y < b) for all the κi’s satisfying

∑n
i=1 κi ≤ 4.

Arismendi (2013) derived a recursive formula for higher order moments in a one–sided truncated
multivariate standard normal distribution. Kan and Robotti (2017) also developed excellent recurrence
relations in a doubly truncated multivariate normal distribution, and claimed that their algorithm could
compute higher order moments faster than Arismendi (2013). The result of Kan and Robotti (2017)
can be applicable to the likelihood-based inference that has a capability to compute the necessary
higher order moments. However, it seems that their algorithm is not fast enough for a large data
analysis. For instance, they stated that the Matlab program bases on the algorithm computed all the
product moments with 0 ≤ κi ≤ 4 in less than 29 seconds on a PC when n = 6, but we have seen
that the computing time is increasing rapidly as n increase. Actually, it requires computing 5n product
moments to get desired outcomes. Thus, even if n is moderately large, it is too time consuming. Note
that the generalized mixed model (GMM) has some patterned covariance matrices. We may enjoy the
patterned covariance structure to overcome this problem.

A general form of model equation for a mixed model is

Y = Xβ + Zu + ϵ (1.1)

with β and u representing fixed effects and random effects. X and Z are corresponding model ma-
trices, and ϵ is a vector of errors. The random part Zu could be partitioned as Zu =

∑r
i=1 Ziui. For

notational convenience, define u0 = ϵ and Z0 = I. Customary, the random effects ui have the proper-
ties E(ui) = 0, Var(ui) = σ2

i Iqi for i = 0, . . . , r, and Cov(ui,u′j) = 0 for all i , j, where qi denotes the
dimension of ui. Then, under the normality assumption of random components, the distribution of Y
is a multivariate normal N(Xβ,Σ) with Σ =

∑r
i=0 ZiZ′iσ

2
i .

A nonlinear generalized mixed model occurs when Y is an unobservable latent variable. For
instance, we can only observe if the latent variable exceed a threshold of zero; that is, observed
variable W is determined by wi = 1(yi > 0), i = 1, . . . , n, then W follows a mixed effects probit
model. However, if we can observe Y only in limited range (ℓ, u), where ℓ and u are known lower and
upper censored points, then the observed variable is defined by

wi =


ℓ, if yi ≤ ℓ,
yi, if ℓ < yi < u,
u, if yi ≥ u.

This leads to a mixed effects censored regression model.
The most popular statistical method for the nonlinear GMM may be the maximum likelihood.

Since the theory of maximum likelihood is well established, analyses based on the maximum likeli-
hood can be done without theoretical problems, but there are certain computational issues inherent in
the maximum likelihood method. Usually, the maximum likelihood estimate (MLE) is obtained by
solving log-likelihood equations. Thus, to apply this approach, an analyzer must be able to calculate
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log-likelihood equations, which requires computing the moments of a truncated multivariate normal
distribution. See, for example, McCulloch (1994), and Lee and Lee (2019).

The computation of truncated moments is tedious. To avoid this difficulty, most statistical pack-
ages dealing with a nonlinear GMM maximize numerically approximated likelihood rather than exact
likelihood by some numerical methods. For example, a SAS procedure NLMIXED (SAS, 2015) ap-
proximates the likelihood by integrating over the random components using the adaptive Gaussian
quadrature, and then maximize it by a dual quasi-Newton method. pglm (Croissant, 2017), an R
package approximate the likelihood function by Gauss-Hermite quadratures, while Rchoice (Sarrias,
2016), another R package use a Monte Carlo integration method for the approximation. As a result, it
can be observed that different packages give different estimates and standard errors.

2. The result

In what follows, we will use shorthand notations∫ b

a
xκ f (x)dx =

∫ b1

a1

· · ·
∫ bn

an

xκ11 · · · x
κn
n f (x1, . . . , xn)dxn · · · dx1

and E(Yκ| a < Y < b) = E(Yκ11 · · ·Y
κn
n | a < Y < b). Let ϕn(x;µ,Σ) and Φn(x;µ,Σ) denote joint density

and distribution functions of a n-variate normal with mean vector µ and covariance matrix Σ. Define
mκ(a,b)(µ, σ

2) = E(Yκ| a < Y < b) and Φ(b, a; µ, σ2) = Pr[a < Y < b] where Y ∼ N(µ, σ2), the κ-th
truncated moment of a univariate normal distribution with mean µ, variance σ2 and truncation from
below at a and above at b. Also, we rewrite (1.1) as

Y = µ + Zu + ϵ, (2.1)

where u ∼ Nq(0,D).

Theorem 1. Under (2.1), the product moment E(Yκ| a < Y < b) is equal to

1
Pr[a < Y < b]

∫ ∞

−∞

n∏
i=1

mκi(ai,bi)

(
µ̃i, σ

2
ϵ

)
Φ

(
bi, ai; µ̃i, σ

2
ϵ

)
ϕq (u; 0,D) du, (2.2)

where µ̃i = µi + z′iu, and z′i is the ith row of Z.

Proof: The marginal distribution of Y in (2.1) isN(µ,Σ), and the conditional distribution of Y, given
u is N(µ + Zu, σ2

ϵ I) where Σ = σ2
ϵ In + Z′DZ. Therefore,

ϕn(y;µ,Σ) =
∫ ∞

−∞
ϕn

(
y;µ + Zu, σ2

ϵ In

)
ϕq (u; 0,D) du

and ∫ b

a
yκϕn (y;µ,Σ) dy =

∫ b

a

∫ ∞

−∞
yκϕn

(
y;µ + Zu, σ2

ϵ In

)
ϕq(u; 0,D)dudy

=

∫ ∞

−∞

n∏
i=1

∫ bi

ai

yκii ϕ1

(
yi; µ̃i, σ

2
ϵ

)
ϕq(u; 0,D)dyidu

=

∫ ∞

−∞

n∏
i=1

mκi(ai,bi)

(
µ̃i, σ

2
)
Φ1

(
bi, ai; µ̃i, σ

2
ϵ

)
ϕq(u; 0,D)du (2.3)
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Thus, dividing (2.3) by Pr[a < Y < b], we can get (2.2). �

The truncated moment of a univariate normal distribution can be calculated by an explicit formula,
see for example Burkardt (2014). Thus, these simple observations can transition high dimensional
integration problem into a relatively simple low dimensional integration problem. Theorem 1 is useful
for computing Pr[a < Y < b] as well. Let κ = 0, then (2.3) is directly applicable to calculate the
probability. This calculation could be simpler than the randomized Quasi Monte Carlo procedure by
Genz (1992, 1993). See also the computation of Ln(a,b;µ,Σ) in Kan and Robotti (2017).

Example 1. Consider the one-way classification model:

Yi j = µi j + αi + ϵi j, i = 1, . . . , q; j = 1, . . . , ni

with α = (α1, . . . , αq)′ ∼ N(0, σ2
αIq). Then, the integral part of (2.2) becomes

∫ ∞

−∞

q∏
i=1

ni∏
j=1

mκi j

(ai j,bi j)

(
µi j + αi, σ

2
ϵ

)
Φ1

(
bi j, ai j; µi j + αi, σ

2
ϵ

)
ϕq

(
α; 0, σ2

αIq

)
dα

=

q∏
i=1


∫ ∞

−∞

ni∏
j=1

mκi j

(ai j,bi j)

(
µi j + ν, σ

2
ϵ

)
Φ1

(
bi j, ai j; µi j + ν, σ

2
ϵ

)
ϕ1

(
ν; 0, σ2

u

)
dν

 . (2.4)

This shows E(Yκ| a < Y < b) =
∏q

i=1 E(yκi
i | ai < yi < bi), where yi, κi, ai and bi are appropriate parti-

tions of corresponding vectors. This is somewhat obvious, because if i , i′, yi and yi′ are independent.
Once we note Var(yi) = σ2

ϵ Ini + σ
2
αJni where Jn is a n × n square matrix of 1’s, then Corollary 1 is the

consequence of (2.4).

Corollary 1. Suppose Y ∼ N(µ, σ2
ϵ In + σ

2
αJn), then

E(Yκ| a < Y < b] (2.5)

=
1

Pr[a < Y < b]

∫ ∞

−∞

n∏
i=1

mκi(ai,bi)

(
µi + ν, σ

2
ϵ

) [
Φ1

(
bi; µi + ν, σ

2
ϵ

)
− Φ1

(
ai; µi + ν, σ

2
ϵ

)]
ϕ1

(
ν; 0, σ2

u

)
dν.

The covariance matrix considered in Corollary 1 can be observed in various statistical models
such as the random effects panel regression model. A numerical method, such as the Gauss-Hermit
quadrature might work well since (2.5) requires only a one-dimensional integration. Therefore, it
seems that Corollary 1 is useful for limited dependent models in the random effects panel regression
model.

Example 2. Suppose now a random nested model:

Yi jk = µi jk + αi + γi j + ϵi jk, i = 1, . . . , q; j = 1, . . . , r; k = 1, . . . ,m (2.6)

with α = (α1, . . . , αq)′ ∼ N(0, σ2
αIq) and γ = (γ11, . . . , γqr)′ ∼ N(0, σ2

γIqr). Let yi = (yi1, . . . , yir)′ and
yi j = (Yi j1, . . . ,Yi jm)′. As before, yi’s are independent, it suffice to calculate the truncated moment of
yi, which have a covariance matrix of the form σ2

ϵ Iqr + σ
2
αJqr + σ

2
γ(
⊕q

i=1 Jr), where A
⊕

B denotes
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the direct sum of two matrices A and B, for E(Yκ| a < Y < b]. In view of Theorem 1, it is easy to
check that

E
(
yκi

i | ai < yi < bi

]
=

1
Pr

[
ai < yi < bi

] × ∫ ∞

−∞

∫ ∞

−∞


q∏

j=1

m∏
k=1

mκi jk

(ai jk ,bi jk)
(
µ̃i jk, σ

2
ϵ

)
Φ1

(
bi jk, ai jk; µ̃i jk, σ

2
ϵ

)
ϕ1

(
ν; 0, σ2

α

)
dνϕr

(
γi; 0, σ2

γIr

)
dγi,

where µ̃i jk = µi jk + ν + γi j.

This integration requires (r + 1)-dimensional integration, which may be easier than rm-dimensional
integration.

3. Numerical examples

To evaluate the performance of Corollary 1, we built an R program using Rcpp (Eddelbuettel et al.,
2018), and calculate the truncated mean and covariance matrix of Y ∼ N(µ, In + Jn) with truncation
from above at the same point 1. We takes equal spaced n values including end points between −1 and
1 for µ. When n = 5, the calculated values are shown below.

$tmean

[1] -1.8767852 -1.4108813 -0.9786409 -0.5947036 -0.2695688

$tvar

[,1] [,2] [,3] [,4] [,5]

[1,] 1.4373311 0.4591293 0.4217783 0.3702806 0.3098274

[2,] 0.4591293 1.3412275 0.4028950 0.3542322 0.2968225

[3,] 0.4217783 0.4028950 1.1919713 0.3271588 0.2747230

[4,] 0.3702806 0.3542322 0.3271588 1.0004813 0.2433471

[5,] 0.3098274 0.2968225 0.2747230 0.2433471 0.7935028

These values coincide with those of tmvtnorm (Wilhelm and Manjunath, 2010) up to the 4th digit
after the decimal point, but Corollary 1 provides the result much faster than tmvtnorm. The mean
running time of our program was 5.148414 milliseconds on our PC, which is about 15 times faster
than tmvtnorm in 100 iterations. The advantage stands out when n is large. For example, when
n = 10, Corollary 1 is about 200 times faster than tmvtnorm. These computations are done under R
environment (R Core Team, 2019).

The computation of distribution function of a multivariate normal distribution may be another
issue in computational statistics. For instance, most computational methods for the truncated moment
are based on the distribution function. As the truncated moment, the multiple integral problem is
involved in this computation. Genz (1992, 1993) gave a randomized Quasi Monte Carlo procedure
for computing the distribution function of a multivariate normal distribution. Genz’s method seems
adequate for the computation since a Quasi Monte Carlo dominates quadrature methods for higher
dimensional problems; therefore, we can compare our computation with those since his method was
implemented in an R package called mvtnorm (Genz et al., 2020). At the same configuration used
before, we have observed that two methods give essentially the same values, matched up to the 4th

digit after the decimal point, for n = 5, 10, 20, 100; however, Corollary 1 is faster than mvtnorm
about 100 times when n = 10, but 600 times when n = 100.
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Kan and Robotti (2017) provided a Matlab package, ftnorm for computing the product moments
of a truncated multivariate normal distribution. We could obtain a very similar mean and covariance
matrix from ftnorm; however, it is much slower than tmvtnorm. It is hard to use ftnorm in real data
analysis despite the capacity to compute the higher order moments because it is unendurably slow
when n is large, say n ≥ 10.

4. Conclusion

In this paper, an algorithm is provided to compute the higher order moment of a truncated multivariate
normal distribution in a nonlinear generalized mixed model. The algorithm requires a relatively lower
dimensional integration. For instance, it demands only one-dimension numerical integral in the one-
way layout model. In this situation, we have shown numerically that the algorithm can compute the
product moment in accuracy using the advantage of computing time. The algorithm would dominate
other existing methods to calculate the higher order product moments of a truncated multivariate
normal distribution with some covariance matrices. The algorithm also has an ability to compute the
distribution function of a multivariate normal distribution with an apparent advantage.

The method may be useful in many areas. For example, we can use it to derive the exact maximum
likelihood estimate in the random effects panel probit or censored data models.
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