• 제목/요약/키워드: nonlinear iteration method

검색결과 225건 처리시간 0.021초

비선형 해양파의 파형 연구에 관하여 (A Study on Nonlinear Water-Wave Profile)

  • 장택수;황성현;권순홍
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.179-182
    • /
    • 2004
  • This paper deals with a new mathematical formulation of nonlinear wave profile based on Banach fixed point theorem. As application of the formulation and its solution procedure, some numerical solutions was presented in this paper and nonlinear equation was derived. Also we introduce a new operator for iteration and getting solution. A numerical study was accomplished with Stokes' first-order solution and iteration scheme, and then we can know the nonlinear characteristic of Stokes' high-order solution. That is, using only Stokes' first-oder(linear) velocity potential and an initial guess of wave profile, it is possible to realize the corresponding high-oder Stokian wave profile with tile new numerical scheme which is the method of iteration. We proved the mathematical convergence of tile proposed scheme. The nonlinear strategy of iterations has very fast convergence rate, that is, only about 6-10 iterations arc required to obtain a numerically converged solution.

  • PDF

바인더 랩의 대변형 계산을 위한 효과적인 반복법 (An Effective Iteration Method for the Large Deformation Calculation of a Binder Wrap)

  • 오형석;금영탁;임장근
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.140-148
    • /
    • 1993
  • When a large automobile sheet metal part is formed in a draw die, the binder wrap is first calculated to predict the initial punch contact location for avoiding wrinkles and severe stretching of its thin blank sheet. Since the boundary of a pseudo blank in calculating a binder wrap by means of a geometrically nonlinear finite element method is unknown in advance, an iteration method is generally used. This paper presents an effective iteration method for correction of the pseudo blank in a binder wrap calculation. For the performance test, two examples are adopted. The calculated results for both examples show the good convergence which wasted solutions are obtained in the second iteration step.

  • PDF

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

Form-finding analysis of suspension bridges using an explicit Iterative approach

  • Cao, Hongyou;Zhou, Yun-Lai;Chen, Zhijun;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.85-95
    • /
    • 2017
  • This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing equations are derived for calculating the accurate unstrained lengths of the entire cable systems both the main cable and the hangers. And for the gradient-based iteration method, the derivation of explicit calculation for the Jacobian matrix while solving the nonlinear governing equation enhances the computational efficiency. The results from sensitivity analysis show well performance of the explicit Jacobian matrix compared with the traditional finite difference method. According to two numerical examples of long span suspension bridges studied, the proposed method is also compared with those reported approaches or the fundamental criterions in suspension bridge structural analysis, which eventually confirms the accuracy and efficiency of the proposed approach.

Energy based approach for solving conservative nonlinear systems

  • Bayat, M.;Pakar, I.;Cao, M.S.
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.131-136
    • /
    • 2017
  • This paper concerns two new analytical approaches for solving high nonlinear vibration equations. Energy Balance method and Hamiltonian Approach are presented and successfully applied for nonlinear vibration equations. In these approaches, there is no need to use small parameters to solve and only with one iteration, high accurate results are reached. Numerical procedures are also presented to compare the results of analytical and numerical ones. It has been established that, the proposed approaches are in good agreement with numerical solutions.

NEW ANALYTIC APPROXIMATE SOLUTIONS TO THE GENERALIZED REGULARIZED LONG WAVE EQUATIONS

  • Bildik, Necdet;Deniz, Sinan
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.749-762
    • /
    • 2018
  • In this paper, the new optimal perturbation iteration method has been applied to solve the generalized regularized long wave equation. Comparing the new analytic approximate solutions with the known exact solutions reveals that the proposed technique is extremely accurate and effective in solving nonlinear wave equations. We also show that,unlike many other methods in literature, this method converges rapidly to exact solutions at lower order of approximations.

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

MULTIGRID METHOD FOR TOTAL VARIATION IMAGE DENOISING

  • HAN, MUN S.;LEE, JUN S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권2호
    • /
    • pp.9-24
    • /
    • 2002
  • Total Variation(TV) regularization method is effective for reconstructing "blocky", discontinuous images from contaminated image with noise. But TV is represented by highly nonlinear integro-differential equation that is hard to solve. There have been much effort to obtain stable and fast methods. C. Vogel introduced "the Fixed Point Lagged Diffusivity Iteration", which solves the nonlinear equation by linearizing. In this paper, we apply multigrid(MG) method for cell centered finite difference (CCFD) to solve system arise at each step of this fixed point iteration. In numerical simulation, we test various images varying noises and regularization parameter $\alpha$ and smoothness $\beta$ which appear in TV method. Numerical tests show that the parameter ${\beta}$ does not affect the solution if it is sufficiently small. We compute optimal $\alpha$ that minimizes the error with respect to $L^2$ norm and $H^1$ norm and compare reconstructed images.

  • PDF

IMPROVED GENERALIZED M-ITERATION FOR QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS WITH APPLICATION IN REAL HILBERT SPACES

  • Akutsah, Francis;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.59-82
    • /
    • 2022
  • In this paper, we present a modified (improved) generalized M-iteration with the inertial technique for three quasi-nonexpansive multivalued mappings in a real Hilbert space. In addition, we obtain a weak convergence result under suitable conditions and the strong convergence result is achieved using the hybrid projection method with our modified generalized M-iteration. Finally, we apply our convergence results to certain optimization problem, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other improved iterative methods (modified SP-iterative scheme) in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.