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NEW ANALYTIC APPROXIMATE SOLUTIONS TO THE

GENERALIZED REGULARIZED LONG WAVE EQUATIONS

Necdet Bİldİk and Sinan Denİz

Abstract. In this paper, the new optimal perturbation iteration method

has been applied to solve the generalized regularized long wave equation.
Comparing the new analytic approximate solutions with the known exact

solutions reveals that the proposed technique is extremely accurate and
effective in solving nonlinear wave equations. We also show that,unlike

many other methods in literature, this method converges rapidly to exact

solutions at lower order of approximations.

1. Introduction

Nonlinear partial differential equations (NPDEs) represent many scientific
phenomena in applied mathematics and physics and it is still very difficult to
solve most of them either numerically or analytically. By 2000s, many au-
thors have used a variety of methods to analyze the approximate solutions
of NPDEs, such as homotopy analysis method (HAM) [29], homotopy per-
turbation Sumudu transform method [36], modified simple equation method
[22], homotopy perturbation method (HPM) [16, 27], Adomian decomposition
method (ADM) [19], variational iteration method (VIM) [35] and the sine-
cosine method [5]. Because of the inadequacy of these methods, the newly
developed techniques such as perturbation iteration method [1,2], optimal ho-
motopy asymptotic method [7, 18, 24], optimal perturbation iteration method
(OPIM) [8, 13, 33, 34] have recently drawn more attention to determine more
accurate and effective solutions for nonlinear models.

One of the famous NPDEs is the generalized regularized long wave (GRLW)
equation which can be given as

(1.1) ut + ux + α(up)x − βuxxt = 0, (x, t) ∈ (a, b)× (0, T ),

where α, β are positive constants and p is a positive integer. GRLW equation
was first used as a model for small-amplitude long-waves on the surface of water
in a channel by Peregrine [28]. Additionally, Eq. (1.1) presents mathematical
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models for predicting a variety of physical phenomena such as longitudinal
dispersive waves in elastic rods, pressure waves in liquid-gas bubble mixtures
and rotating flow down a tube. In (1.1), the nonlinear term α(up)x causes
steepening of the wave form. The last term βuxxt is called as dispersion effect
term and this term makes the wave form spread. The solitons emerge by virtue
of the balance between dispersion and nonlinearity [26]. These solitons exist
in many types of systems from sky to laboratory [6]. GRLW equation can also
be used instead of KdV equation in many physical systems [10].

GRLW equation reduced to the regularized long wave equation (RLW) and
the modified regularized long wave (MRLW) equation for p = 1, 2 respectively.
The RLW and MRLW equations describe the development of an undular bore.
The behavior of an undular bore is characterised with constants α, β in Eq.
(1.1). These equations have been used for modeling in many fields of science
and engineering such as magneto-hydrodynamics waves in plasma, rotating
flow down a tube, ion-acoustic waves in plasma, longitudinal dispersive waves in
elastic rods, pressure waves in liquidgas bubble mixture, lossless propagation of
shallow water waves and thermally excited phonon packets in low temperature
nonlinear crystals [12,23,25,31].

There are few analytical solutions available for special kinds of GRLW in
the literature. Therefore, the numerical solutions of these equations have been
subject of many studies. Several numerical techniques including the Petrov-
Galerkin method [14], finite difference method [20], finite element methods
[11,15,17], the radial basis function collocation method [32], expansion methods
[3, 4] and the cubic B-spline finite element method [30] have been established
for the approximate solution of these equations.

In this study, we put forward a new approach to optimal perturbation iter-
ation method to make it practicable for NPDEs. Generalized regularized long
wave (GRLW) equation is specifically addressed to demonstrate the effective-
ness of OPIM in solving such NPDEs. Examples show that the new approxi-
mate solutions obtained via proposed method is more accurate and impressive
than many other techniques in literature.

2. Analysis of OPIM on GRLW equation

Optimal perturbation iteration method (OPIM) is a combination of pertur-
bation iteration [1,2] and optimal homotopy asymptotic methods [7,18,24]. It
has been lately developed and it has been efficiently implemented to strongly
nonlinear differential equations [8,33,34]. In this section, we give a formulation
of OPIM for the general NPDEs. At the same time, we will have created the
algorithm for GRLW equations.

(a) Consider the following nonlinear partial differential equation in closed
form:

(2.1) F (uxxt, ux, ut, u, ε) = 0,
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where u = u(x, t) and ε is the perturbation parameter which is artificially
inserted into (2.1). In this case, ε = 1 can be submitted into Eq. (1.1) as:

(2.2) F = ut + ε (ux + α(up)x − βuxxt) = 0.

(b) Approximate solution with one correction term in the perturbation ex-
pansion is taken as

(2.3) un+1 = un + ε(uc)n,

where n ∈ N∪{0}. Upon substitution of (2.3) into (2.2), expanding in a Taylor
series with first derivatives only gives the following algorithm:
(2.4)
F + Fu (uc)n ε+ Fux

((uc)n)
x
ε+ Fut

((uc)n)
t
ε+ Fuxxt

((uc)n)
xxt

ε+ Fεε = 0,

where

Fu =
∂F

∂u
, Fux

=
∂F

∂ux
, Fut

=
∂F

∂ut
, Fuxxt

=
∂F

∂uxxt
, Fε =

∂F

∂ε
.

Calculating all derivatives and functions at ε = 0 yields

(2.5) ((uc)n)
t

= β(un)xxt − (un)x − α((u)n
p
)
x
− (un)t.

(2.5) is called as perturbation iteration algorithm (PIA) for RGLW equation
(1.1). In order to initiate the iteration procedure, a first trial function u0 is
selected appropriately according to the prescribed conditions. Then the first
correction term (uc)0 can be computed from the algorithm (2.5) by using u0
and given condition(s).

(c) Use the following equation

(2.6) un+1 = un + Pn(uc)n

to enhance the accuracy of the results and effectiveness of the method. Here
P0, P1, P2, . . . are convergence control parameters which ensure us to adjust the
convergence.
Progressing for n = 0, 1, . . . , more approximate solutions are determined as:

(2.7)

u1 = u(x, t;P0) = u0 + P0(uc)0,
u2(x, t;P0, P1) = u1 + P1 (uc)1 ,

...
um(x, t;P0, . . . , Pm−1) = um−1 + Pm−1(uc)m−1.

(d) Putting the approximate solution um into Eq. (2.1), the general problem
results in the following residual:

(2.8) Re(x, t;P0, . . . , Pm−1) = F ((um)xxt, (um)x, (um)t, (um)) .

Evidently, when Re(x, t;P0, . . . , Pm−1) = 0 then the approximation um(x, t;P0,
. . . , Pm−1) will be the exact solution. However, it doesn’t usually happen in
nonlinear equations, but the functional can be minimized as:

(2.9) J(P0, . . . , Pm−1) =

∫ T

0

∫ b

a

Re2(x, t;P0, . . . , Pm−1)dxdt,
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where a, b and T are selected from the domain of the problem. Optimum values
of P0, P1, . . . can be acquired from the conditions

(2.10)
∂J

∂P0
=

∂J

∂P1
= · · · = ∂J

∂Pm−1
= 0.

The constants P0, P1, . . . can also be stated from

(2.11)
Re(x0, t0;Pi) = Re(x1, t1;Pi) = · · ·

= Re(xm−1, tm−1;Pi) = 0, i = 0, 1, . . . ,m− 1,

where xi, ti ∈ (a, b) × (0, T ). For more information about finding these con-
stants, we refer to [18,24].

Inserting the constants into the last one of Eqs. (2.7), the approximate so-
lution of order m is obtained. Having identified the optimal parameters in this
fashion, we call the new iterative technique (2.4) together with (2.9) or (2.11)
the optimal perturbation iteration method (OPIM).

3. Applications

In this section, we give some numerical experiments to test the accuracy of
the proposed method. For illustration purposes, we will consider the special
cases of the GRLW equation. We will first obtain the PIM results and then
the OPIM solutions depending on them.

Example 3.1. As the first case, consider the GRLW equation (1.1) with p =
2, α = β = 1. In this case, the solitary wave solution can be computed for the
equation:

(3.1) ut + ux +
(
u2
)
x
− uxxt = 0; x ≥ 0, 0 ≤ t ≤ 1

with the initial condition

(3.2) u(x, 0) =
3

2
sech2

(
x+ 1

2
√

2

)
.

The exact solution of this problem can be given as [9, 21]

(3.3) u(x, t) =
3

2
sech2

(
x+ 1− 2t

2
√

2

)
.

Initially, trial function u0 can be taken as

(3.4) u0 =
3

2
sech2

(
x+ 1

2
√

2

)
.

Using the algorithm (2.5) and Eq. (3.4), first order problem arises as:

(3.5)
((uc)0)

t
=

3sech2
(

1+x

2
√

2

)
tanh

(
1+x

2
√

2

)
2
√
2

+
9sech4

(
1+x

2
√

2

)
tanh

(
1+x

2
√

2

)
2
√
2

;

(uc)0(x, 0) = 0.
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Solving (3.5) gives the first correction term as:

(3.6) (uc)0 = t

3sech2
(

1+x
2
√
2

)
tanh

(
1+x
2
√
2

)
2
√

2
+

9sech4
(

1+x
2
√
2

)
tanh

(
1+x
2
√
2

)
2
√

2

 .
PIM Solutions:

After obtaining (uc)0, the first order approximate solution becomes:

(u1)PIM = u0 + (uc)0(3.7)

= 3
2 sech2

(
x+1
2
√
2

)
+ t

 3sech2

(
1+x
2
√
2

)
tanh

(
1+x
2
√
2

)
2
√
2

+
9sech4

(
1+x
2
√
2

)
tanh

(
1+x
2
√
2

)
2
√
2

 .
Using the algorithm (2.5) and u1, second order approximate solution can be
calculated as:

(u2)PIM = u1 + (uc)1(3.8)

= 3
2 sech2

(
1+x
2
√
2

)
− 3

16 t
2sech4

(
1+x
2
√
2

)
− 9

8 t
2sech6

(
1+x
2
√
2

)
− 27

16 t
2sech8

(
1+x
2
√
2

)
−

63t tanh
(

x+1

2
√

2

)
sech6

(
x+1
2
√
2

)
8
√
2

−
3t tanh

(
x+1
2
√
2

)
sech4

(
x+1

2
√

2

)
2
√
2

−
3t3 tanh

(
x+1
2
√
2

)
sech6

(
x+1

2
√

2

)
8
√
2

−
9t3 tanh

(
x+1
2
√
2

)
sech8

(
x+1
2
√
2

)
4
√
2

−
27t3 tanh

(
x+1
2
√
2

)
sech10

(
x+1
2
√
2

)
8
√
2

+ 3
8 t

2 tanh2
(

x+1
2
√
2

)
sech2

(
x+1
2
√
2

)
+ 81

8 t
2 tanh2

(
x+1
2
√
2

)
sech6

(
x+1
2
√
2

)
+ · · · .

OPIM Solutions:

With the help of Eqs. (2.5), (2.7), (3.6), first and second order approximate
solutions can be obtained as:

(u1)OPIM(3.9)

= u0 + P0(uc)0

= 3
2 sech2

(
x+1
2
√
2

)
+ P0t

 3sech2

(
1+x
2
√
2

)
tanh

(
1+x
2
√
2

)
2
√
2

+
9sech4

(
1+x
2
√
2

)
tanh

(
1+x
2
√
2

)
2
√

2

 ,
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(u2)OPIM(3.10)

= u1 + P1



− 1

16
27P0t

2sech8

(
x+ 1

2
√

2

)
− 9

8
P0t

2sech6

(
x+ 1

2
√

2

)
− 3

16
P0t

2sech4

(
x+ 1

2
√

2

)

+
9t tanh

(
x+1
2
√
2

)
sech4

(
x+1
2
√
2

)
2
√

2
+

3t tanh
(

x+1
2
√
2

)
sech2

(
x+1
2
√
2

)
2
√

2

− 3
√

2P0t tanh

(
x+ 1

2
√

2

)
sech4

(
x+ 1

2
√

2

)
−

63P0t tanh
(

x+1
2
√
2

)
sech6

(
x+1
2
√
2

)
8
√

2

−
27P 2

0 t
3 tanh

(
x+1
2
√
2

)
sech10

(
x+1
2
√
2

)
8
√

2
+

3

8
P0t

2 tanh2

(
x+ 1

2
√

2

)
sech2

(
x+ 1

2
√

2

)

+
3P 2

0 t
3 tanh3

(
x+1
2
√
2

)
sech4

(
x+1
2
√
2

)
4
√

2
+

9P0t tanh3
(

x+1
2
√
2

)
sech4

(
x+1
2
√
2

)
√

2
+ · · ·



.

In the light of the information in Section 2, the unknown constants can be
optimally obtained. P0 can be found by constructing the residual

(3.11) Re(x, t;P0) = (u1)t + (u1)x +
(

(u1)
2
)
x
− (u1)xxt

for the first order OPIM solution. Using collocation method with x0 = 25,
t0 = 0.25, Eq. (2.11) becomes
(3.12)

Re(25, 0.25;P0)

= − 4.39773833× 10−8 + 1.4214507× 10−8P0 − 1.70943984× 10−16P 2
0 = 0.

Solving (3.12) gives P0 = 3.09384 and P0 = 8.3153 × 107. Substituting P0 =
3.09384 into (3.9) yields

(u1)OPIM = sech2

(
x+ 1

2
√

2

)[
1.5 + 3.28151t tanh

(
x+ 1

2
√

2

)
(3.13)

+78.7563t sinh4

(
x+ 1

2
√

2

)
csch3

(
x+ 1√

2

)]
.

In a similar way, one can get the second order OPIM solution as:

(u2)OPIM(3.14)

= − 0.00180923sech11

(
x+ 1

2
√

2

)
×



12580.3t3 sinh

(
x+ 1

2
√

2

)
− 1918.02t3 sinh

(
3(x+ 1)

2
√

2

)
− 344.261t3 sinh

(
5(x+ 1)

2
√

2

)
− 9.83602t3 sinh

(
7(x+ 1)

2
√

2

)
+ 1044.t2 cosh

(
5(x+ 1)

2
√

2

)
+ 102.t2 cosh

(
7(x+ 1)

2
√

2

)
+
(
−5064.t2 − 408.064

)
cosh

(
x+ 1

2
√

2

)
+
(
−180.t2 − 272.043

)
cosh

(
3(x+ 1)

2
√

2

)
− 3442.57t sinh

(
3(x+ 1)

2
√

2

)
− 1266.36t sinh

(
5(x+ 1)

2
√

2

)
− 71.6573t sinh

(
7(x+ 1)

2
√

2

)
− 116.59 cosh

(
5(x+ 1)

2
√

2

)
− 29.1474 cosh

(
7(x+ 1)

2
√

2

)
− 3.2386 cosh

(
9(x+ 1)

2
√

2

)
− 7.34419t sinh

(
9(x+ 1)

2
√

2

)
− 2240.53t sinh

(
x+ 1

2
√

2

)
+ 2.t2 cosh

(
9(x+ 1)

2
√

2

)



.
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Table 1. Absolute errors of the first and second order PIM
and OPIM approximate solutions at x = 25 for Example 1.

t PIM-1st PIM-2nd OPIM-1st OPIM-2nd
0.1 5.05× 10−9 2.6957× 10−9 4.1581× 10−9 4.2717× 10−10

0.2 1.1535× 10−8 6.5156× 10−9 6.881× 10−9 6.3401× 10−9

0.3 1.9673× 10−8 1.1677× 10−8 7.9506× 10−9 5.9871× 10−10

0.4 2.9716× 10−8 1.8433× 10−8 7.1159× 10−9 2.9616× 10−9

0.5 4.1953× 10−8 2.7072× 10−8 4.0875× 10−9 3.0257× 10−10

0.6 5.6717× 10−8 3.7926× 10−8 1.4678× 10−9 1.2308× 10−9

0.7 7.4391× 10−8 5.138× 10−8 9.934× 10−9 2.5269× 10−10

0.8 9.5418× 10−8 6.7876× 10−8 2.1753× 10−8 4.2352× 10−10

0.9 1.203× 10−7 8.7924× 10−8 3.7434× 10−8 6.4065× 10−9

1. 1.4964× 10−7 1.121× 10−7 5.7565× 10−8 9.0995× 10−9

Figure 3.1. Exact solution for Example 1.

By following the similar procedure, higher order approximate solutions can be
reached. Due to huge amount of calculations, one has to use a symbolic com-
puter program such as Mathematica, Maple, Matlab etc. A comparison of the
PIM solutions with the OPIM solutions and absolute errors are given in Table
1 and Table 2. It is clear from these tables that both approximate solutions are
found to be in good agreement with analytical solution. In addition to that,
OPIM gives slightly better results than PIM. PIM, OPIM and exact solutions
are also sketched in Figures 3.1, 3.2 and 3.3.

This problem has been also considered by several authors with different
techniques such as ADM and VIM [21, 35]. The new approximate solutions
indicate that OPIM provides more accurate solution than those in [9, 21, 35],
especially for big amplitudes and small values of time. One can also increase
the accuracy of OPIM results by taking more terms from Eqs. (2.7). However,
a clear conclusion can be drawn from the obtained results that the OPIM
provides highly accurate approximate solutions for GRLW equations even in
the first and second iterations.
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Table 2. Absolute errors of the first and second order PIM
and OPIM approximate solutions at x = 100 for Example 1.

t PIM-1st PIM-2nd OPIM-1st OPIM-2nd
0.1 4.6919× 10−32 2.5045× 10−32 3.8632× 10−32 3.9688× 10−33

0.2 1.0717× 10−31 6.0536× 10−32 6.393× 10−32 5.8905× 10−33

0.3 1.8278× 10−31 1.0849× 10−31 7.3868× 10−32 5.5626× 10−33

0.4 2.7609× 10−31 1.7126× 10−31 6.6113× 10−32 2.7515× 10−32

0.5 3.8978× 10−31 2.5152× 10−31 3.7976× 10−32 2.8112× 10−32

0.6 5.2695× 10−31 3.5236× 10−31 1.3637× 10−32 1.1435× 10−32

0.7 6.9116× 10−31 4.7737× 10−31 9.2295× 10−32 2.3477× 10−32

0.8 8.8652× 10−31 6.3063× 10−31 2.021× 10−31 3.9349× 10−31

0.9 1.1177× 10−30 8.1689× 10−31 3.478× 10−31 5.9522× 10−32

1. 1.3903× 10−30 1.0416× 10−30 5.3483× 10−31 8.4543× 10−32

(a) First order PIM solution (b) First order OPIM solution

Figure 3.2. First order approximate solutions for Example
1; 0 ≤ x ≤ 100, 0 ≤ t ≤ 1.

(a) Second order PIM solution (b) Second order OPIM solution

Figure 3.3. Second order approximate solutions for Example
1; 0 ≤ x ≤ 100, 0 ≤ t ≤ 1.
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Example 3.2. Consider the GRLW equation (1.1) with p = 8, α = β = 1 as
follows:

(3.15) ut + ux +
(
u8
)
x
− uxxt = 0

with the initial condition

(3.16) u(x, 0) =
7
√

18 sech
2
7

(
7(x+ 1)√

5

)
.

The exact solution of this problem is given by [9, 21]

(3.17) u(x, t) =
7
√

18 sech
2
7

(
7(x+ 1− 5t)√

5

)
.

PIM Solutions:

In order to start the iterations, (3.16) can be taken as a trial function u0. By
repeating similar processes as in the previous example, one can calculate the
following approximate solutions:

(3.18) (u1)PIM = u0 + t


2 7√232/7 sinh

(
7(x+1)√

5

)
sech

9
7

(
7(x+1)√

5

)
√
5

+
288 7√232/7 sinh

(
7(x+1)√

5

)
sech

23
7

(
7(x+1)√

5

)
√
5

 ,

(u2)PIM = u1 − 7
5

7
√

232/7t2sech
2
7

(
7(x+1)√

5

)
− 1008

5
7
√

232/7t2sech
16
7

(
7(x+1)√

5

)
(3.19)

+


− 12694 cosh

(
28(x+1)√

5

)
+ 4313 cosh

(
42(x+1)√

5

)
+ 4 cosh

(
56(x+1)√

5

)
− 28850 cosh

(
28(x+1)√

5

)
+ 8331 cosh

(
42(x+1)√

5

)
+ 4 cosh

(
56(x+1)√

5

)
+ · · ·

− 4316
7
√

232/7
√

5 cosh
(

28(x+1)√
5

)
sech

2
7

(
7(x+1)√

5

)


and so on.

OPIM Solutions:

By the help of Eqs. (2.5), (2.7), (3.16), we get

(3.20) (u1)OPIM = u0 + tP0


2 7√232/7 sinh

(
7(x+1)√

5

)
sech

9
7

(
7(x+1)√

5

)
√
5

+
288 7√232/7 sinh

(
7(x+1)√

5

)
sech

23
7

(
7(x+1)√

5

)
√
5

 ,
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Table 3. Absolute errors of the first and second order PIM
and OPIM approximate solutions at x = 30 for Example 2.

t PIM-1st PIM-2nd OPIM-1st OPIM-2nd
0.1 7.9394× 10−13 6.6752× 10−13 4.1004× 10−13 4.6839× 10−15

0.2 2.12× 10−12 1.8538× 10−12 2.8795× 10−13 3.2893× 10−15

0.3 4.2783× 10−12 3.8589× 10−12 6.6637× 10−13 7.6119× 10−15

0.4 7.7382× 10−12 7.1522× 10−12 2.9222× 10−12 3.338× 10−14

0.5 1.3233× 10−11 1.2467× 10−11 7.2138× 10−12 8.2402× 10−14

0.6 2.1912× 10−11 2.0953× 10−11 1.4688× 10−11 1.6778× 10−13

0.7 3.557× 10−11 3.4404× 10−11 2.7142× 10−11 3.1005× 10−13

0.8 5.7015× 10−11 5.5629× 10−11 4.7383× 10−11 5.4126× 10−13

0.9 9.0638× 10−11 8.9019× 10−11 7.9802× 10−11 9.1158× 10−13

1. 1.433× 10−10 1.4144× 10−10 1.3126× 10−10 1.4994× 10−12

(u2)OPIM = u1 + P2
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.

(3.21)

For the parameters P0, P1, the method given in Section 2 can be used.
By using collocation method, we reach the values P0 = 9.04508 and P0 =
1.71562, P1 = −0.61424 for the (u1)OPIM and (u2)OPIM , respectively. Sub-
stituting these values into Eqs. (3.20) and (3.21) yields the first and second
order OPIM approximate solutions for Example 2. The absolute errors with
the exact solution is given in Tables 3 and 4 for some constant amplitude. Fig-
ures 3.4, 3.5 and 3.6 display the exact solution and the approximate solutions
obtained via PIM and OPIM.

It should be noted that as the number of iterations increase, the approxi-
mate solution becomes more intricate and the use of the symbolic computer
program becomes essential. Mathematica 9.0 is used to cope with the complex
computations for illustrations in this paper.

4. Conclusions

In this paper, a new efficient technique, namely optimal perturbation iter-
ation method is introduced for solving nonlinear partial differential equations.
Firstly, the classical perturbation iteration technique is modified for handling
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Table 4. Absolute errors of the first and second order PIM
and OPIM approximate solutions at x = 80 for Example 2.

t PIM-1st PIM-2nd OPIM-1st OPIM-2nd
0.1 3.0029× 10−32 2.5248× 10−32 1.5509× 10−32 1.7716× 10−34

0.2 8.0186× 10−32 7.0117× 10−32 1.0891× 10−32 1.2441× 10−34

0.3 1.6182× 10−31 1.4595× 10−31 2.5204× 10−32 2.879× 10−34

0.4 2.9268× 10−31 2.7052× 10−31 1.1053× 10−31 1.2625× 10−33

0.5 5.0054× 10−31 4.7157× 10−31 2.7285× 10−31 3.1167× 10−33

0.6 8.2881× 10−31 7.9253× 10−31 5.5558× 10−31 6.3463× 10−33

0.7 1.3454× 10−30 1.3013× 10−30 1.0266× 10−30 1.1727× 10−32

0.8 2.1565× 10−30 2.1041× 10−30 1.7922× 10−30 2.0472× 10−32

0.9 3.4282× 10−30 3.367× 10−30 3.0184× 10−30 3.4479× 10−32

1. 5.4203× 10−30 5.3497× 10−30 4.965× 10−30 5.6714× 10−32

Figure 3.4. Exact solution for Example 2.

(a) First order PIM solution (b) First order OPIM solution

Figure 3.5. First order approximate solutions for Example
2; 0 ≤ x ≤ 100, 0 ≤ t ≤ 1.

NPDEs. Then, OPIM is generated by inserting new convergence parameters
into algorithms of PIM. PIM and OPIM have been successfully implemented
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(a) Second order PIM solution
(b) Second order OPIM solution

Figure 3.6. Second order approximate solutions for Example
2; 0 ≤ x ≤ 100, 0 ≤ t ≤ 1.

to find the solution of the generalized regularized long wave equation. Illustra-
tions show that OPIM is effective mathematical tool for solving these types
of equations. In this method, it is important to get unknown parameters
P0, P1, . . . , and this makes it time consuming, especially for large n. In our
cases, this method converges rapidly at lower order of approximations. On
the other hand, since the method is often tedious to use by hand, one has to
use a symbolic computer program to obtain approximate solutions. In this
study, Mathematica 9.0 has been used to perform the complex calculations in
applications. Finally, we can say that the proposed technique is an applicable
alternative to existing numerical methods.
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