• Title/Summary/Keyword: nonlinear interpolation

Search Result 142, Processing Time 0.032 seconds

Sliding Mode Control with Nonlinear Interpolation in Variable Boundary Layer

  • Kim, Yookyung;Jeon, Gijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35.1-35
    • /
    • 2002
  • $\textbullet$ Sliding mode control (SMC) with nonlinear interpolation in variable boundary layer (VBL) is proposed $\textbullet$ A sigmoid function is used for nonlinear interpolation in VBL. $\textbullet$ The Parameter of the sigmoid function is tuned by fuzzy controller $\textbullet$ The choice of parameter for the sigmoid function is guided by FC. $\textbullet$ The parameter is continuously updated as boundary layer thickness varies. $\textbullet$ The proposed method hasbetter tracking performance than the conventional linear interpolation $\textbullet$ To demonstrate its performance the proposed control algorithm is applied to a nonlinear system.

  • PDF

Design of a Sliding Mode Controller with Nonlinear Boundary Transfer Characteristics

  • Kim, Yoo K.;Gi J. Jeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.164.2-164
    • /
    • 2001
  • Sliding mode control (SMC) with variable nonlinear boundary layer is proposed. Two Fuzzy logic controllers (FLCs) are used to decide both boundary layer thickness and nonlinear interpolation using sigmoid function in the boundary layer. The nonlinear interpolation in the boundary layer suing FLC reduces stead state error and chattering. Sigmoid function is used to nonlinear interpolation in the boundary layer sigmoid function parameter with FLC. To demonstrate its performance, the Proposed control algorithm is applied to a simple nonlinear system.

  • PDF

Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer

  • Kim, Yoo-K.;Jeon, Gi-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1810-1815
    • /
    • 2003
  • Sliding mode control with nonlinear interpolation in the boundary layer is proposed. A modified sigmoid function is used for nonlinear interpolation in the boundary layer and its parameter is tuned by a fuzzy logic controller. The fuzzy logic controller that takes the distance between the system state and the sliding surface as its input guides the choice of parameter of the modified sigmoid function and the parameter is on-line tuned. Owing to the decreased thickness, the proposed method has better tracking performance than the conventional linear interpolation method. To demonstrate its performance, the proposed control algorithm is applied to a simple nonlinear system model.

  • PDF

Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer

  • Kim, Yoo-Kyung;Jeon, Gi-Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.523-529
    • /
    • 2004
  • Sliding mode control with nonlinear interpolation in the boundary layer is proposed. A modified sigmoid function is used for nonlinear interpolation in the boundary layer and its parameter is tuned by a fuzzy controller. The fuzzy controller that takes both the sliding variable and a measure of chattering as its inputs tunes the parameter of the modified sigmoid function. Owing to the decreased thickness of the boundary layer and the tuned parameter, the proposed method has superior tracking performance than the conventional linear interpolation method.

Interpolation-Based Adaptive LQ Control for Nonlinear Systems (비선형 시스템을 위한 보간 기반의 적응 LQ 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.618-623
    • /
    • 2008
  • This paper presents a design method of the Interpolation-based adaptive LQ controller that is accomplished by getting the final controller interpolated with each gain of sub-LQ controllers. The Lagrange interpolation method is used in the scheme. The proposed controller is useful to control nonlinear systems which are especially changed the system parameters. The design method is illustrated by an application to the stabilization and tracking problems of an inverted pole system on a cart. Several cases of simulations are carried out in order to validate the control effectiveness and robustness. The simulation results are compared with those of LQ controller and prove the better control performance than LQ controller.

A STATISTICS INTERPOLATION METHOD: LINEAR PREDICTION IN A STOCK PRICE PROCESS

  • Choi, U-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.657-667
    • /
    • 2001
  • We propose a statistical interpolation approximate solution for a nonlinear stochastic integral equation of a stock price process. The proposed method has the order O(h$^2$) of local error under the weaker conditions of $\mu$ and $\sigma$ than those of Milstein' scheme.

  • PDF

Real-time Data Enhancement of 3D Underwater Terrain Map Using Nonlinear Interpolation on Image Sonar (비선형 보간법을 이용한 수중 이미지 소나의 3 차원 해저지형 실시간 생성기법)

  • Ingyu Lee;Jason Kim;Sehwan Rho;Kee–Cheol Shin;Jaejun Lee;Son-Cheol Yu
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.110-117
    • /
    • 2023
  • Reconstructing underwater geometry in real time with forward-looking sonar is critical for applications such as localization, mapping, and path planning. Geometrical data must be repeatedly calculated and overwritten in real time because the reliability of the acoustic data is affected by various factors. Moreover, scattering of signal data during the coordinate conversion process may lead to geometrical errors, which lowers the accuracy of the information obtained by the sensor system. In this study, we propose a three-step data processing method with low computational cost for real-time operation. First, the number of data points to be interpolated is determined with respect to the distance between each point and the size of the data grid in a Cartesian coordinate system. Then, the data are processed with a nonlinear interpolation so that they exhibit linear properties in the coordinate system. Finally, the data are transformed based on variations in the position and orientation of the sonar over time. The results of an evaluation of our proposed approach in a simulation show that the nonlinear interpolation operation constructed a continuous underwater geometry dataset with low geometrical error.

A predistorter using interpolator for reduction of nonlinear distortion (비선형왜곡감소를 위한 보간 적용 전치왜곡기 연구)

  • 권오주;이종성;이은형
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.605-608
    • /
    • 2001
  • This paper proposes LUT based predistorter using interpolater to reduce nonlinear distortion which was generated by HPA. We minimized performance degradation from the reduced LUT size with linear interpolation. We updated LUT using LMS algorithm using input data as reference data. As a result, it is shown that when the size of the LUT is 8, linear interpolation is the most outstanding performance in the view of performance and H/W complexity.

  • PDF

STUDY ON APPLICATION OF NEURO-COMPUTER TO NONLINEAR FACTORS FOR TRAVEL OF AGRICULTURAL CRAWLER VEHICLES

  • Inaba, S.;Takase, A.;Inoue, E.;Yada, K.;Hashiguchi, K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, the NEURAL NETWORK (hereinafter referred to as NN) was applied to control of the nonlinear factors for turning movement of the crawler vehicle and experiment was carried out using a small model of crawler vehicle in order to inspect an application of NN. Furthermore, CHAOS NEURAL NETWORK (hereinafter referred to as CNN) was also applied to this control so as to compare with conventional NN. CNN is especially effective for plane in many variables with local minimum which conventional NN is apt to fall into, and it is relatively useful to nonlinear factors. Experiment of turning on the slope of crawler vehicle was performed in order to estimate an adaptability of nonlinear problems by NN and CNN. The inclination angles of the road surface which the vehicles travel on, were respectively 4deg, 8deg, 12deg. These field conditions were selected by the object for changing nonlinear magnitude in turning phenomenon of vehicle. Learning of NN and CNN was carried out by referring to positioning data obtained from measurement at every 15deg in turning. After learning, the sampling data at every 15deg were interpolated based on the constructed learning system of NN and CNN. Learning and simulation programs of NN and CNN were made by C language ("Association of research for algorithm of calculating machine (1992)"). As a result, conventional NN and CNN were available for interpolation of sampling data. Moreover, when nonlinear intensity is not so large under the field condition of small slope, interpolation performance of CNN was a little not so better than NN. However, when nonlinear intensity is large under the field condition of large slope, interpolation performance of CNN was relatively better than NN.

  • PDF

A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum

  • Wang, Qing;Bae, Dong-Myung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.1-15
    • /
    • 2008
  • The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.