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Abstract

The main idea of this paper introduce stochastic structural parameters and random dynamic
excitation directly into the dynamic functional variational formulations, and developed the
nonlinear dynamic analysis of a stochastic variational principle and the corresponding
stochastic finite element method via the weighted residual method and the small parameter
perturbation technique. An interpolation method was adopted, which is based on
representing the random field in terms of an interpolation rule involving a set of
deterministic shape functions. Direct integration Wilson-@ Method was adopted to solve
finite element equations. Numerical examples are compared with Monte-Carlo simulation
method to show that the approaches proposed herein are accurate and effective for the
nonlinear dynamic analysis of structures with random parameters.

Keywords: stochastic variational principle, nonlinear response, stochastic
finite element method, perturbation technique

1 Introduction

The analysis of structural systems with uncertain properties modeled by random fields has
been the subject of extensive research in the past two decades, over these years , the
majority of the research work has focused on developing various stochastic finite
element method (SFEM) for the numerical solution of the stochastic partial differential
equations involved in such problem, i.e. stochastic spectral approaches(Ghanem and
Spanos 2003), a variety of Monte-Carlo simulation techniques (Ditlevsen and Madsen
1996)( Shreider 1966) as well as many numerical realizations of the perturbation technique
(Kleiber and Hien 1992).

Since nonlinear analysis of structures with stochastic parameters is of considerable
importance as many of the buildings, offshore structures, ships, etc. Some dynamic
excitations that are excited by nature’s actions which exhibit randomly fluctuating
character cannot be treated as deterministic systems. It is essential to consider nonlinearity
arising from geometrical and/or material properties in random structure dynamics.

A classical perturbation-based stochastic method is applied only to linear elastic
systems. However, the linear model may not be always enough to predict the response of
realities, Therefore, material and/or nonlinearity must be included in the analyses. Liu and
Kiureghian (Liu and Kiureghian 1988), Haldar and Zhou (Haldar and Zhou 1992) all
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studied the solutions of two-dimensional nonlinear SFEM via the method of partial
differentiation. Hisada and Noguchi (Hisada and Noguchi 1989) proposed perturbation
SFEM to solve material nonlinear problems. Liu, et al. (Liu, et al. 1986) apply the
First-order perturbation technique to solve the nonlinear dynamic response of random
structure. Zhao L. (Zhao and Chen 2000) used minimum potential energy principle and
perturbation technique to solve nonlinear dynamic problem. Ioannis D. addressed the
perturbation-based stochastic finite element analysis to study deformation processes of
inelastic solids (Loannis and Zhan  2006).

In the present paper, the primary focus is placed on nonlinear stochastic variational
principle of dynamic analysis and incremental SFEM for random structures under dynamic
excitation. The weighted residual method was considered based on the primary equations
of the incremental problems and then more reasonable formulations of incremental SFEM
are developed to use for solving nonlinear problems of random structural dynamics.
Nonlinearities due to material and geometrical effects have been included in this paper.

2 Nonlinear stochastic variational formula of random structural
dynamics

In update Lagrangian descriptions (Bathe 1966) the last known configuration was adopted
as the reference state, the region taken up by the body at this instant will be denoted by ‘q,
and the primary equations describing the incremental problem (Kleiber and Hien 1992)
may be presented in the time interval [r,r+As] as follows:

(Dincremental equations of motion

ASD + pAf, = ph i, 1)
(Dstress-type boundary conditions

A8 n, =A,f, x, €0'S; (2)
(Dlinearized incremental strain-displacement relations

Ay = ;(A,u” +Au,,) €Y
@ linearized incremental constitutive equation

A8 =,Ch s, 4)
(® kinematic boundary conditions

Au, = Az, x, € Q! (5)

in above equation, the constitutive modulus ,C,, are assumed to possibly be functions
of ‘initial’ fields such as stresses and/or internal varlables A8 and A sun - are the first
and second Piola-KirchhofT stress tensor based on the current conﬁguratlon respectively,
and are related by the equation:

A S =850 +Au,,', (6)

Ling')

where, ‘T, is Cauchy stress tensor in the configuration at time ¢.

Let us now illustrate the approach by considering the weighted residual method. We
assumed that the kinematics conditions, i.e. Eqs.(3)—(5) are satisfied, and then relaxing
the kinetic conditions, i.e. Eqs(1)—(2), choosing 5(a,u,) as the weighted function, so the
weighted residual formulation is:

2
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(A5 + pA7; — pA, i, (A, )2+ [ (A7 =A,SDn, B(A,u,)dS = 0 (7
Integral by parts on the first part of left hand side has:

[as58(8u)a0 = [[5,575(a,u,)] d- [ A,5"6(8,u,, i (&)

i.j Y

by employing Gauss-Ostrogradski theorem:
[4,d0= [ands ©)

the Eq.(8) becomes:
[ A58 u)d= [A,58(8,u)n,ds -] a,556 (A, i (10)

[t /N

where,s= 5 s, from Eq.(5) and (4) we can deduce:

5(Au, )= 5(Ai ) =0 x, e8! (11)

@i % 144

5(s,e,)= 5[;(“, A, )j 5(au,,) (12)

Substitute Eqs.(11) and (12) into Eq.(10), we have:

[ASDoA u,)do = _L A

(')

SO(A,un,ds, ~ [ A,55(4, £, ) (13)

by introducing Eq.(13) into Eq.(7), the weighted residual formulation of (7) becomes:
[a506(8,2, a0+ [ (o8 - pn g, -7 (8,1, )a (14)

expressing first Piola-Kirchhoff stress tensor in terms of second Piola-Kirchhoff stress
tensor by Eq.(6) and employing Eq.(4), we have:

Cou 2, 8(A, 5 )+ [ 1, S(A u, JQ+ [ (oA, (A 1, A2 (15)
= LpA,;;(S )dQ+L AES(Au,)dS,

where, Co is tangent stress-strain tensor at time ¢.

Furthermore, let us assumed the damping effects is the nature of the body and is
proportional to the velocities of the body particles, so Eq.(15) becomes:

LpA ii,5(A, u, )dQ + LapA @,8(A, u, )dQ + L C,I,dégg”ﬁ (A, 8,)d0 (16)
= LPArffé‘ U, )2+ J;” A 5,84, u, )ds, __[2 TkIA;ui,k(s( : f./)dQ



Q. Wang and D.-M. Bae: A Study on the Stochastic Finite Element...

where, the constant ¢ is proportional damping factor.
Now let us consider a nonlinear random structure under stochastic dynamic load and
define

b(x,)={b,(x,)  b(x) - by(x)}k=123 (17)

as a R-dimensional discretiziation random vector which can represent randomness in
the cross-sectional area and length of truss, beam and frame members, thickness of plate
and shell elements, Young's modulus and mass density of the material, etc., as well as
time-invariant randomness in the external dynamic load. In addition, the variance of
random field for the structural system should be very small.

Aui[b(xk);xk]=Aui[b°(xk);xk]+sAu;'[b"(x,,);xk]Ab,(xk)+%ezAu;”[b°(xk);xk]Ab,(xk)Abs =) U8
where

aAb, (x) = 8(x) = £lb, (1) ~ 7 (x,)] (19)

£28b, (x,)0, (x,) = 8, (x,)b, (x;) = £°[b, (x,) ~ B (x)11b, () — B ()] (20)

for stochastic functions Cyurhey, 7,0 AD, £ p s WE CAD also obtain the second-order

expanding forms similar to Eq. (18). By introducing these expanding forms into the
Eq.(16), we obtain the following zeroth-, first- and second-order variational formulations
via equating terms of equal orders for small parameters (for simplicity, the left subscript
‘t’ is dropped):

Zeroth-order variational principle (¢° terms)

1)

[ Ch.neisae, )+ [ (o ail +n°aaf (au,)d = [ A0 6(Au, Q-+ [ AF'5(Au,)dS
f

First-order variational principle (&' terms)

[(Ch.aek +CifAe2)0(Ae,)aV + [ (0°Aiit + p* A Yo(Au,)aV + [ i+ 8iif)5(8w, a2 (22)

ijes i

= [ A 6u)av + [ Apo(au,)ds

Second-order variational principle (g terms)
[ (Chael +Ciiel, +Cif, e )o(Ae,dQ+ [ (0°Aii" + p™ Al + p* A )5(Au, )dQ (23)

ijrs ijrs i

+ [ €ONa + M Al + £ M) (Mu,)dQ = [ AN S(Au)dQ+ [ Ap} S(Au,)dS
!

3 Formulation of incremental stochastic finite element method for
random structural dynamic analysis

In the framework of the FEM philosophy the fields b (x,) have to be represented by a
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set of basic random variables. Thus, it is necessary to discretize b°(x,) by expressing
them in terms of nodal values of the appropriate means and covariances. Some methods
have been proposed, i.e. the local averages method (Vanmarcke 1983). In the present paper,
we adopted interpolation method (Liu, Belytschko and Mani 1988) ,which is based on
representing the random field in terms of an interpolation rule involving a set of
deterministic shape functions and the random nodal values of the field:

b (x,) = 9 (x, ) (x,) (24)
where,

b9 (x,) = PO (x) BOx) - b)) (25)

b =) b0 - BOf (26)

where, i=Rxi,7is the number of element node;p©(y,)is element random variable
Vvector; b (x,)is element nodal random variable vector; @ is element random variable
interpolation matrix:

o7 0 @ 0 -

27

=10 97 0 @7 0 - 7
" Rxi
we can relate element random vectorp(x,) to total nodal random vector p(x,)by:
b (x,) = B (x,)b(x,) (28)
where,

B (x,) =AY, (29)
b= n) B - By (30)

N=RxN

b(x,) is total nodal random variable vector, ¥ is the total number of model node. AL,
is element Boolean matrix.

The expectation and covariance of random fields p©(x,) can be written as in matrix
form:

B )] =b"(x,) = B (x,)B° @D
Covlb, (x,),b,(x,)) =8\ = DS, " (32)
where
Var(Z;]) Cov(l;‘ ,52) Cov(l;, ,éﬁ,)
a Var(t;z) Cov(lsz,év) (33)
8 = : B C
sym Var(l;ﬁ,)
and
Ab (x,) = B (x, )Ab (34)
where
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Ab =b -b° (35)

where, b’ and S; stand for mean value vector and the covariance matrix of the nodal
random variable’ b, respectlvely The remaining random field variables in the problem
considered of element e, i.e. the tangent elastic modulus DEb® (x,);x,],Mass density

PO (x,);x,] incremental body force Ar©@p©@(x,);x,] > incremental boundary traction
AFO[b®(x,);x,] » incremental displacement Ay@[b®(x,);x,] » Cauchy stresses tensor
7O (x, );x,] at time ¢, incremental strains tensor A& Ib(x, )%, 1> proportional damping
coefficient a®b®(x,);x,] (the left subscript ‘#” was dropped for simplicity), are expanded
as:

Db (x,);x, ] = B (x, )D[b(x, ); x, ]

PO[b® (x, );x, 1= @ (x,)p  [B(x,); X, ]

AFOTb® (x,);x, ] = @ (x,)AF O [b(x, ); %, ]

AEOTD@ (x, );x, ] = @ (x, )AT[B(x, )i x, ] (36)
Au®[b (x,);x,]= @ (x, )M [b(x, ); x, ]

T (x,);x, 1= B (x, )7 [b(x, ); ]

Ae® b (x,);x, ] = B (x, )Ae[b(x, ); ]

a[b (x,);x, 1= B (x, )@ [b(x, );x,]

Substitute Eqs.(36) into Eq.(16), and collecting terms of equal order with respect to the
small parameter ¢ ,we obtain the zreoth-, first- and second-order finite element equations
for the stochastic, nonlinear dynamic problem in the following form:

Zeroth-order incremental equation (¢° terms):

MO (B)AGD) + C° (B)Ai(DB?) + K™ (B)Ai(B®) = AQ(B) (37)
First-order incremental equation (¢' terms):

M"(b%)AR7 (b0 +C (b%)Ad* (b%) + KT (b%)Ai~ (b)) = AQ” (b°) (38)
M (B2)AG(B7) + €2 (60)Ad (B2) + K™ (b2 )i (6)]

Second-order incremental equation (¢ terms):
M (B%)AE" (b)+C° (b)A6 (b2 ) + KT (b%)Ad* (b)) = AQ* (b°) (3 9)
Mo B2)ad7 (B2 + C (B2 A (B2) + KT (6 i< (BY)]
Mo B0 )+ 0 (B0 (B2) + KT (6’ (B2)]

The formulations of M°,M~*,M*°,K"... referring to Appendix A.

Once Ad°, Ai” , Ad* have been solved by using Egs.(37)—(39),the probabilistic
distribution expressions for the expectation of incremental and total displacement are
obtained as '

E[Ad]= AR° + =§7 Ai E[pi(t + An) = Ela()] + E[ad] (40)

b —
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cross-variances evaluated at two Space-time points &=(xh 1) and £, =(x2,1,)are:

ma"

Cov(a, (1), (1)) = (07 ) §,8° (41)

the second-order accurate expectation ofeat time t are,

E[Aelb(x, );x,11]= Ae’ +%§b/\e‘”" (42)
Ele[b(x,);x,,t+ At])= Ele(t)]+ E[Ae]

the stain cross-variance at any two space-time points can be presented as,
Cov(e{f (x4, ] e, [x7,1, ]): (e(t] ) )Tébe(t2 ye (43)

the second-order accurate expectation of gat time £ are,
E[Ac[b(xk %X af]] = A6’ + %SbAG'ﬂG (44)

Elo[b(x, );x, 1+ At]]= E[o(t)] + E[As]
the stress cross-variance at any two space-time points can be presented as,
Covlo, 160,10, [5,1,1)= (00,7 $,001,)° (43)

Finding the statistical moments for the internal state variables follows the same pattern.

4 Direct integration Wilson-o Method

The Wilson-6 method is essentially an extension of the linear acceleration method, in
which a linear variation of acceleration from time 7 tor+ar is assumed. Referring to Figure
1, in the Wilson-8 method the acceleration is assumed to be linear form from ¢ to time

t+At,where 9>10 (generally, we employ #=1.4). Wheng=1.0, the method reduces to the
linear acceleration scheme.

E T (R

t+ A

Figure 1: Linear acceleration assumption of Wilson-6 method

Let ; denote the increase in time, where 0<r<gAr; then for the time interval tto 7+0Az,
it is assumed that
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-+t U:t U + L (f+€A/ I"J_t U) (46)
At

integrating formulation (42), we obtain:
2
+r [.JZII.J'FII"JT + 7 (t+.9At U_tU) (47)
20At

HTU=’U+'UT+11I"JTZ + 1 Ts(wamﬁ_zﬁ) (48)
2 6OAt

Using formulations (43) and (44), we have at time ¢+6As,

ety 4 OB (e 1) (49)
2
242
’+9A’U=’U+0At’U+0—§t—(”9A’I"J+2'f]) (50)

from which we can solve for “*{and “®*{¢ interms of “y:

1671 U - 6 (t+9At U~ U)___6_t U ! U (5 1)
0*Ar’ oAt

08 =i(r+HNU_tU)_ZTU_@’ﬁ (52)
OAt 2

By introducing Eq.s (51) and (52) into the incremental equation of motion specified at
the time instant ;+6ar we obtain the algebraic system for A% as:

KA § = AQ (53)
where
K =% M+ cikD (54)
(oary o
oA, (55)

AQY = aAQ + M| S 420 [+ 20+ B
o 2

An additional comment on the application of the Wilson-¢ method (and of the implicit
integration approach as a whole) should be made at this point. The configuration at time
t+ At (consequently, at timer + @Az ), for which the equilibrium conditions are established, is
unknown. This usually makes it necessary to carry out additional iterations in order to find
a more accurate solution within each time interval. Such a solution can be obtained by
using the Newton-type iteration techniques, among which the Newton-Raphson scheme is
defined as

K (¢t + OAA"™ U
m=12,...

= Q(t +8Ar) — FT) (¢ + 6Ar) (56)

(m)
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where the vector F¢) stand for the internal nodal forces corresponding to the

displacements

1+0At _ oA 1+6A1
U, =0, +A" U, (57)

Ay, 1s the m-th correction to the incremental displacement vector Ay and m

denotes the iteration number. Since the updating and factorizing of the effective ‘stiffness’
matrix take place anew at each iteration, the computation cost of the method may be high,
it could, therefore, turn out better to use a modified iteration scheme given by

K OA™U, ) = Q(t+0At) - F) (¢ + 0Ar) (58)

(m=1)

where the effective ‘stiffness’ matrix has to be factorized only once at the beginning of
each time interval.

S Numerical Example

A model of part of deck frame of cargo tanker subjected to a time-dependent concentrate
load is considered, cf. Figure 2. the load time function P(t) , which is shown in Figure 3, is
applied at point A. Nonlinear material constitutive relation is shown in Figure 4. The
element cross-section areas 4,k =1,2,---,100, are assumed as random variables. The vertical
and horizontal beams are discretized by 10 equal-length element each. The mean value,

correlation function and coefficient of variation for the cross-sectional areas are assumed
as follows:

E(4)=4"=10.0

‘xi —-X

(4, 4;) = eXp(—Tj’)

7,=0.05

While x, =00, x, =0.01,x, =0.02,---, %, =05, with 2=05. The following deterministic
data are assumed: length L,=20, L,=20, Young’s modules E=20x10", E, =2.0x10°%,
Poisson’s ratio v =0.2, mass density p=0.001, and damping factor £=0.05. Moment of
inertial about x-axis ; =203.

Figure 2: Model of frame structure
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0 0.1 0.25 «s)

Figure 3: Dynamic load time function

0 £

Figure 4: Nonlinear material constitutive relation

The mean values and variances of z-axis displacements at node point A are depicted in
Figure 5 and Figure 6, respectively; the mean values and variances of stresses of element
11 are depicted in Figure 7 and Figure 8, respectively; similarly, covariances of
displacements and stresses are depicted in Figure 9-10, as follows:

0.0400
0.0375 U
0.0350 T———
0.0325 : !
0.0300 imi-]
0.0275 -] AN
0.0250
0.0225 3
0.0200
0.0175
0.0150
0.0125
0.0100
0.0075
0.0050
0.0025 ]
0.0000 i
0.000 0.025 0.050 0.075 0,100 0.125 0.150 0.175 0.200

expected displacements of paint A SFEM
—————— expected displacements of point A, MCS

Displacement

s

<
P
e

e

<

1)
iy
§
|
i
|
{
1
|
{
1
!
i
,

|
'i
1
i
{
Jo

[ S S

.225 0.250 0.275

Time(s)

Figure 5: Mean values of z-axis displacements at node A
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Figure 10: Covariances of stresses of element 11-12

6 Conclusions:

The stochastic variational principle is formulated to solve nonlinear structural dynamics
via the weighted residual method and the small parameter perturbation technique. Base on
incremental analysis of nonlinear problems, the corresponding formulation of incremental
SFEM is developed. Applying Wilson- & method to zeroth-, first- and second-order
incremental recurrence equantions of motion of the structure, the transient nonlinear
analysis of random structure under stochastic dynamic excitation may be obtained
conveniently. In addition, the proposed method in this paper can be incorporated into
widely used deterministic finite element programs in natural and concise manner. The
results compared with MCS method verified that the method proposed in this paper may be
used for nonlinear dynamic analysis of random structures effectively.
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Appendix A: Formulation of Functions

*» Zeroth-order functions
M = i &)(e)op(e)o [(Dmo]"(b(e)odl/(e)
©

e=1
ﬁ -~ ~

= Z Le) (D(e)Oa(e)(}q)(e)Op(e)O [(I)(c)o}’(l)(e)edV(e)
e=1

KT -~ K(LT)O + K(NTL)O

N .
K™ = ; '[M [B(Le)uf PRI gy
KO0 - i L [B(e)o]T(i(“or‘“’oB‘fde(”
NL “~ e} NL NL
ﬁ -t 3 e e e e
AQ® = ; ‘[M [(D(ew]’q,«e)op(t)od,( WAFER gy

N o ¥ 0 5 2(e)0
.&g L” [q,(e) ]’q)m AR g5®

where, B - Lo©@is linear strain-displacement relation matrix, L is differential matrix,

B¢ 1s nonlinear strain-displacement relationship matrix (Bathe 1966), ~ is total number
of elements in structure;

* First-order functions
M” = ZV: {I HErpere [q,(e)o ]T GGV 4
et

=]

Lm Doplr [@‘e“’ ]Tq)(ede(e)

+ '[M&)(e)opw)o[q)(m),p ]T(P(e)odV‘e)

+ L“ Bevpen [q)(,,,m ]r 0 gy }

CP = zv: {_[Ma’””a“""’@“’“p“”[(I)‘”O]T@(ewdy{e)
el + .{“‘) DN NP0p©e [q)wm]f DGy

+ LM@(e).pu@)oa)(e)op(e)o [q)(m],q)(e)DdV(ﬁ)
+ L” PP pen [Q(E)O]](D‘“md[/“)
+ L“ DN NGenpn [q,(a;.,o]? Dy ©

+ Lm &)(e)ou(E)O@(e)Op(s)ﬁ [(I)(e)ﬂ]rq)(E)-pdV(e)}

e _ (T (),
K™ =K% KD
I
7 = (e ¢ ¢
K(LT),;O = z {.[M [B(LP)O] q)(L)Oc(e)vPB(Ltv)OdV(e)

e=l

; '{ [B(ie,\,p ]T@(e)OC@mB(Le)odV(e)
)

N I [B‘f"’]r B9 COBER gy
(¢} A

+ Lm [Bfm]"&)ie)oC(EmB(Lg},p de}

13



Q. Wang and D.-M. Bae: A Study on the Stochastic Finite Element...

i
Mo _ @0 [ @ )0 (e).op ()0 177(e)
K _Z{La [BNL ] OBy AV
e=l
@0 | @0 (0RO 177(e)
+ [ Bor T ®orrpgray
@0 7 @y (@)oo (X0 ()0 177 (e)
+ [, BT ®Orompgray
©0 [ @0 (0piere 17
+ [ BT ®err By dV"}
& r~ -
AQ” = {L [q,<e)o D@ LHEOAFE gy @
e=
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» Second-order functions
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The (@ represents the i-th derivative of random variable.

All the functions are valuated at the expectations p°of the nodal random variables
vector b.
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