Browse > Article

A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum  

Wang, Qing (Department of Naval Architecture and Marine Systems Engineering, PuKyong National University)
Bae, Dong-Myung (Department of Naval Architecture and Marine Systems Engineering, PuKyong National University)
Publication Information
Journal of Ship and Ocean Technology / v.12, no.2, 2008 , pp. 1-15 More about this Journal
Abstract
The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.
Keywords
stochastic variational principle; nonlinear response; stochastic finite element method; perturbation technique;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kleiber, M. and T.D. Hien. 1992. The Stochastic finite element method. Wiley
2 Yang, Y.B., S.P. Lin and L.J. Leu. 2007. Solution strategy and rigid element for nonlinear analysis of elastically structures base on updated Lagrangian formulation, Engineering Structures ,29, pp. 1189-1200   DOI   ScienceOn
3 Zhao, L. and Q. Chen. 2000. A stochastic variational formulation for nonlinear dynamic analysis of structure. Comput. Methods Appl. Mech. Engrg., 190, pp. 597-608   DOI   ScienceOn
4 Ditlevsen, O. and H.O. Madsen. 1996. Structural Reliability Methods, John Wiley
5 Hisada, T. and H. Noguchi. 1989. Development of a nonlinear stochastic FEM and its application, in: Proceedings of the Fifth International Conference on Structural Safety and Reliability, Australia, pp. 1097-1104
6 Belytschko, T., W.K. Liu and B. Moran. 2000. Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons New YORK
7 Ghanem, R.G. and P. D. Spanos. 2003. Stochastic Finite Element: A Spectral Approach, REVISED EDTION. Springer-Verlag New York
8 Clough, R. W. and J. Penzien. 1993. Dynamics of structures. McGraw-Hill
9 Loannis, D. and K. Zhan. 2006. Perturbation-based stochastic FE analysis and robust design of inelastic deformation processes, Comput. Methods Appl. Mech. Engrg., 195, pp.2231-2251   DOI   ScienceOn
10 Bathe, K.J. 1966. Finite Element Procedure. Prentice- Hall
11 Liu, W.K., T. Belytschko and A. Mani. 1988. Prandom field finite elements. Int. J. Num. Mrth. Appl. Mech. Eng., 67, pp.27-54
12 Falsone, G. and G. Ferro. 2007. An exact solution for the static and dynamic analysis of FE discretized uncertain structures, Comput. Methods Appl. Mech. Engrg., 196, pp.2390-2400   DOI   ScienceOn
13 Shreider, Y.A. 1966. The Monte Carlo Method, Pergamon Press
14 Vanmarcke, E.H. 1983. Random Fields: Analysis and Synthesis, MIT Press, Cambridge
15 Hac, K., B.H. Ba and A. Ba. 2007. Nonlinear analysis of rock-fill dams to non-stationary exitation by the stochastic Wilson-\theta$ method, Applied Math. And Comput., 194, pp.333-345   DOI   ScienceOn
16 Liu, W.K., T. Belytschko and A. Mani.1986. Probabilistic Finite element methods in nonlinear dynamics, Comput. Methods Appl. Mech. Engng. ,56 ,1, pp. 61-81   DOI   ScienceOn
17 Zhou, A. and Y. Haldar. 1992. Reliability of geometrically nonlinear PR Frames, J. Engrg. Mech., ASCE , 118, 10, pp. 2148-2155   DOI
18 Liu, P.L. and A.D. Kiureghian. 1988. Reliability of Geometrically Nonlinear Structures, in: P.D. Spanos (Ed.), Probabilistic Methods in Civil Engineering, ASCE, New York, pp.164-167